14.6 – Directional derivative and gradient University of Massachusetts Amherst Math 233 – Fall 2013

Recall that if z = f(x, y), the partial derivatives f_x and f_y represent the rates of change of f in the x- and y-directions. That is, the partial derivatives give the rates of change in the directions of the unit vectors \vec{i} and \vec{j} .

However, it is often convenient to compute the rates of change of f in an arbitrary direction.

Definition 1. The *directional derivative* of f at (x_0, y_0) in the direction of a unit vector $\vec{u} = \langle a, b \rangle$ is

$$D_{\vec{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

This definition is consistent with our previous notion of partial derivatives. Namely, $D_{\vec{i}}f(x,y) = f_x(x,y)$ and $D_{\vec{j}}f(x,y) = f_y(x,y)$.

Theorem 1. If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector $\vec{u} = \langle a, b \rangle$ and

$$D_{\vec{u}}f(x,y) = af_x(x,y) + bf_y(x,y).$$

Note. Each unit vector corresponds to a point on the unit circle, and therefore can be represented by an angle.

Example 1. Find the directional derivative $D_{\vec{u}}f(x,y)$ if $f(x,y) = x^3 - 3xy + 4y^2$ and \vec{u} is the unit vector given by the angle $\theta = \pi/6$. What is $D_{\vec{u}}f(1,2)$?

The partial derivatives of f(x, y) define an important vector.

Definition 2. If f(x, y) is a function of two variables, then the *gradient* of f is the vector function ∇f defined by

$$\nabla f(x,y) = \langle f_x(x,y), f_y(x,y) \rangle = f_x(x,y) \,\vec{i} + f_y(x,y) \,\vec{j}.$$

Example 2. Let $f(x,y) = \sin(x) + e^{xy}$. Compute $\nabla f(x,y)$ and $\nabla f(0,1)$.

The directional derivative given in Theorem 1 can also be expressed in terms of the gradient.

Corollary 2. The directional derivative of a function f(x, y) in the direction of a unit vector \vec{u} is $D_{\vec{u}}f(x, y) = \nabla f(x, y) \cdot \vec{u}.$

Example 3. Find the directional derivative of the function $f(x, y) = x^2y^3 - 4y$ at the point (2, -1) in the direction of the vector $\vec{v} = \langle 2, 5 \rangle$.

Definition 3. The gradient of a function of three variables f(x, y, z) is

$$\nabla f(x,y,z) = \langle f_x(x,y,z), f_y(x,y,z), f_z(x,y,z) \rangle$$
$$= f_x(x,y,z) \vec{i} + f_y(x,y,z) \vec{j} + f_z(x,y,z) \vec{k}.$$

Moreover, the directional derivative along a unit vector $\vec{u} = \langle a, b, c \rangle$ is

$$D_{\vec{u}}f(x,y,z) = \nabla f(x,y,z) \cdot \vec{u}$$

= $af_x(x,y,z)\vec{i} + bf_y(x,y,z)\vec{j} + cf_z(x,y,z)\vec{k}.$

Example 4. If $f(x, y, z) = x \sin(yz)$, find the ∇f and the directional derivative of f at (1, 3, 0) in the direction of $\vec{v} = \langle 1, 2, -1 \rangle$.

Theorem 3. Let f be a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\vec{u}}f$ is $|\nabla f|$ and it occurs when \vec{u} has the same direction as the gradient vector ∇f . That is, the rate of change in f is greatest in the direction of the gradient vector ∇f .

Example 5. Let $f(x, y) = xe^y$.

- (1) Find the rate of change of f at the point P(2,0) in the direction of $Q(\frac{1}{2},2)$.
- (2) In what direction does f have the maximum rate of change?
- (3) What is this maximum rate of change?

Example 6. Match the each surfaces with its gradient vector field.

Definition 4. Let f(x, y, z) = k be a level surface of f, and let $P(x_0, y_0, z_0)$ be a point on this level surface. The *tangent plane to the level surface at* P is given by the equation

$$f_x(x_0, y_0, z_0)(x - x_0) + f_y(x_0, y_0, z_0)(y - y_0) + f_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Example 7. Find the equations of the tangent plane and normal line at the point (-2, 1, -3) to the ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3.$$

(The normal line is the line orthogonal to the tangent plane at the point of tangency.)