14.7 – Maxima and minima University of Massachusetts Amherst Math 233 – Fall 2013

Definition 1. A function of two variables has a *local maximum* at (a, b) if $f(x, y) \le f(a, b)$ when (x, y) is near (a, b), and f(a, b) is a *local maximum value*.

Similarly, f has a local minimum at (a, b) if $f(x, y) \ge f(a, b)$ when (x, y) is near (a, b), and f(a, b) is a local minimum value.

Theorem 1. If f(x, y) has a a local maximum or local minimum at (a, b) and f_x and f_y exist, then $f_x(a, b) = f_y(a, b) = 0$.

Definition 2. A point (a, b) is a *critical point* of f(x, y) if $f_x(a, b) = f_y(a, b) = 0$, or if one of these partial derivatives does not exist.

Theorem 2 (Second derivative test). Suppose the second partial derivatives of f(x, y) are continuous on a disk with center (a, b), and suppose that $f_x(a, b) = f_y(a, b) = 0$, i.e. (a, b) is a critical point of f. Let

$$D = D(a,b) = \begin{vmatrix} f_{xx}(a,b) & f_{xy}(a,b) \\ f_{yx}(a,b) & f_{yy}(a,b) \end{vmatrix} = f_{xx}(a,b)f_{yy}(a,b) - f_{xy}(a,b)^2.$$

(1) If D > 0 and $f_{xx}(a,b) > 0$, then f(a,b) is a local minimum.

(2) If D > 0 and $f_{xx}(a,b) < 0$, then f(a,b) is a local maximum.

(3) If D < 0, then f(a, b) is a saddle point. (It is nether a maximum nor a minimum.)

(4) If D = 0, this test is inconclusive.

Example 1. Identify the critical points of (a) $f(x, y) = x^2 + y^2 - 2x - 6y + 14$,

(b) $f(x,y) = x^4 + y^4 - 4xy + 1.$

Example 2. A rectangular box without a lid is to be made from 12 m^2 of cardboard. Find the maximum volume of such a box.

Theorem 3 (Extreme value theorem). If f is continuous on a closed, bounded set D in \mathbb{R}^2 , then f attains an absolute maximum value $f(x_1, y_1)$ and an absolute minimum value $f(x_2, y_2)$ at some points (x_1, y_1) and (x_2, y_2) in D.

Note. The extremal points of f in a bounded region D will be at the critical points of f or on the boundary of D.

Example 3. Find the absolute maximum and minimum values of the function $f(x, y) = x^2 - 2xy + 2y$ on the rectangle $D = \{(x, y) : 0 \le x \le 3, 0 \le y \le 2\}$.