QUIZ 2 UNIVERSITY OF MASSACHUSETTS AMHERST MATH 233 – FALL 2013 SEPTEMBER 20, 2013

NAME:

Consider two vectors \vec{u} and \vec{v} satisfying $|\vec{u}| = 3$ and $|\vec{v}| = 5$. (Two points per problem.)

(1) If \vec{u} is perpendicular to \vec{v} , then $\vec{u} \cdot \vec{v} =$

(2) If \vec{u} is parallel to \vec{v} , then $\vec{u} \cdot \vec{v} =$

(3) Determine the area of the triangle $\triangle ABC$ if $\theta = \pi/3$.

(4) Determine $\vec{u} \cdot (\vec{u} \times \vec{v})$.

SOLUTIONS: Questions (1) and (2) follow from the relation

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \theta,$$

where θ is the angle between \vec{u} and \vec{v} .

(1) ANSWER: If \vec{u} and \vec{v} are perpendicular, then $\theta = \pi/2$, hence $[\vec{u} \cdot \vec{v} = 0]$.

(2) ANSWER: If \vec{u} is parallel to \vec{v} , then $\theta = 0$, hence $|\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| = 15|$.

(3) ANSWER: Recall that $|\vec{u} \times \vec{v}|$ is the area of the parallelogram \overrightarrow{ABDC} generated by the vectors \vec{u} and \vec{v} . Moreover, $|\vec{u} \times \vec{v}| = |\vec{u}||\vec{v}|\sin\theta$. The area of the triangle is half the area of the parallelogram. Thus the area of the triangle is

$$\frac{|\vec{u}||\vec{v}|\sin\theta}{2} = \frac{15}{2}\sin(\pi/3) = \boxed{\frac{15\sqrt{3}}{4}}$$

Alternatively, the area of the triangle is bh/2, where the base of the triangle is 5 and the height of the triangle is $3\sin(\pi/3)$. Once again, we find that the area is $(15\sqrt{3})/4$.

(4) ANSWER: The triple produce is $\boxed{0}$ because the vectors \vec{u} , \vec{u} , and \vec{v} are coplanar. A similar argument is that the vector $\vec{u} \times \vec{v}$ is perpendicular to \vec{u} , hence $\vec{u} \cdot (\vec{u} \times \vec{v}) = 0$.