Section 1.1: Sets

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

A set is a collection of objects. The objects in a set are elements.

A *set* is a collection of objects. The objects in a set are *elements*. Examples:

 $\{1,\mathsf{cat},\psi\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(Sets are always written using curly braces.)

A *set* is a collection of objects. The objects in a set are *elements*. Examples:

 $\{1,\mathsf{cat},\psi\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

(Sets are always written using curly braces.)

A *set* is a collection of objects. The objects in a set are *elements*. Examples:

 $\{1,\mathsf{cat},\psi\}$

(Sets are always written using curly braces.)

 $\{a,\,b,\,c,\,\ldots,\,z\}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A *set* is a collection of objects. The objects in a set are *elements*. Examples:

 $\{\mathbf{1},\mathsf{cat},\psi\}$

(Sets are always written using curly braces.)

 $\{a,\,b,\,c,\,\ldots,\,z\}$

 $\begin{array}{ll} \textit{Natural numbers} & \mathbb{N} = \{1,2,3,4,\dots\} \\ \textit{Integers} & \mathbb{Z} = \{\dots,-3,-2,-1,0,1,2,\dots\} \end{array}$

We write $a \in A$ to denote that a is an element of the set A. We write $a \notin A$ if a is not an element of A.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

```
The symbols \in means "is an element of the set". (Think "E" for "element".)
```

We write $a \in A$ to denote that a is an element of the set A. We write $a \notin A$ if a is not an element of A.

The symbols \in means "is an element of the set". If $b \in Y$... "If b is an element of Y..." Let $x \in A$... "Let x be an element of A..." Suppose $n \notin \mathbb{Z}$... "Suppose n is not an integer..."

We write $a \in A$ to denote that a is an element of the set A. We write $a \notin A$ if a is not an element of A.

The symbols \in means "is an element of the set". If $b \in Y$... "If b is an element of Y..." Let $x \in A$... "Let x be an element of A..." Suppose $n \notin \mathbb{Z}$... "Suppose n is not an integer..."

Example:

 $A = \{\{1\}, \{2,3\}, 3\}$

 $\{1\} \in A \qquad \qquad \{2,3\} \in A \qquad \qquad 3 \in A$

We write $a \in A$ to denote that a is an element of the set A. We write $a \notin A$ if a is not an element of A.

The symbols \in means "is an element of the set". If $b \in Y$... "If b is an element of Y..." Let $x \in A$... "Let x be an element of A..." Suppose $n \notin \mathbb{Z}$... "Suppose n is not an integer..."

Example:

 $A = \{\{1\}, \{2, 3\}, 3\}$

$\{1\}\in A$	$\{2,3\}\in A$	$3 \in A$
1 otin A	$2 ot\in A$	$\{3\} ot\in A$
$1\in\{1\}$	$2\in\{2,3\}$	

Two sets are *equal* if they contain exactly the same elements.

Examples:

$$\begin{aligned} \{ \mathsf{red}, \mathsf{green}, \mathsf{blue} \} &\neq \{ \mathsf{r}, \mathsf{g}, \mathsf{b} \} \\ & \{ \{ 1 \}, 2, 3 \} \neq \{ 1, 2, 3 \} \\ & \{ 1, 2, 3 \} = \{ 1, 2, 3 \} \end{aligned}$$

Two sets are *equal* if they contain exactly the same elements.

Examples:

$$\begin{aligned} \{ \mathsf{red}, \mathsf{green}, \mathsf{blue} \} &\neq \{ \mathsf{r}, \mathsf{g}, \mathsf{b} \} \\ & \{ \{ 1 \}, 2, 3 \} \neq \{ 1, 2, 3 \} \\ & \{ 1, 2, 3 \} = \{ 1, 2, 3 \} \end{aligned}$$

$$\{1,\mathsf{cat},\psi\}=\{\psi,1,\mathsf{cat}\}$$

Two sets are *equal* if they contain exactly the same elements.

Examples:

$$\begin{aligned} \{ \mathsf{red}, \mathsf{green}, \mathsf{blue} \} &\neq \{ \mathsf{r}, \mathsf{g}, \mathsf{b} \} \\ & \{ \{ 1 \}, 2, 3 \} \neq \{ 1, 2, 3 \} \\ & \{ 1, 2, 3 \} = \{ 1, 2, 3 \} \end{aligned}$$

$$\{1,\mathsf{cat},\psi\}=\{\psi,1,\mathsf{cat}\}=\{1,\mathsf{cat},\mathsf{cat},\mathsf{cat},\psi\}$$

Two sets are *equal* if they contain exactly the same elements.

Examples:

$$\begin{aligned} \{ \mathsf{red}, \mathsf{green}, \mathsf{blue} \} &\neq \{ \mathsf{r}, \mathsf{g}, \mathsf{b} \} \\ & \{ \{ 1 \}, 2, 3 \} \neq \{ 1, 2, 3 \} \\ & \{ 1, 2, 3 \} = \{ 1, 2, 3 \} \end{aligned}$$

$$\{1,\mathsf{cat},\psi\}=\{\psi,1,\mathsf{cat}\}=\{1,\mathsf{cat},\mathsf{cat},\mathsf{cat},\psi\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Order does not matter. Repeated elements are superfluous.

The *cardinality* (or *size*) of a set is the number of elements in the set. A set is *infinite* if it contains infinitely many elements; otherwise the set is *finite*.

Examples:

Finite of size 3:	$\{r,g,b\},\{1,2,3\},\{1,cat,\psi\}$
Infinite:	\mathbb{N},\mathbb{Z}

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

If A is a finite set, the cardinality of A is denoted by

|A| or #A.

Examples:

$$|\{1,2,3\}|=\#\{1,2,3\}=3$$

If A is a finite set, the cardinality of A is denoted by

$$|A|$$
 or $\#A$.

Examples:

$$|\{1,2,3\}| = \#\{1,2,3\} = 3$$

$$\#\{3,2,1,2,3\} = \#\{1,2,3\} = 3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The *empty set* is the set that contains zero elements.

Notation

The empty set is denoted by $\{\}$ or \emptyset .

$$\#\{\}=|\varnothing|=0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\{3,5,7,11,\dots\}$

 $\{3, 5, 7, 11, \dots\}$

Odd primes $\{3, 5, 7, 11, 13, 17, 19, 23, 29, 31, \dots\}$

$\{3,5,7,11,\dots\}$

$$\begin{array}{ll} \{3,5,7,11,\dots\}\\\\ \mbox{Odd primes} & \{3,5,7,11,13,17,19,23,29,31,\dots\}\\\\ \mbox{Twin primes} & \{3,5,7,11,13,17,19,29,31,\dots\}\\\\ \mbox{Integer part of } \frac{3^n}{2^n} \ (n\geq 3) & \{3,5,7,11,17,25,38,57,\dots\} \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Set-builder notation is an explicit description of a set in terms of rules. Set-build notation has the following presentation:

 $\{expression : rules\}.$

Example:

The set of even integers =
$$\{n \in \mathbb{Z} : n \text{ is even}\}$$

= $\{n : n = 2k, k \in \mathbb{Z}\}$
= $\{2n : n \in \mathbb{Z}\}.$

Set-builder notation is an explicit description of a set in terms of rules. Set-build notation has the following presentation:

 $\{expression : rules\}.$

Example: Rational numbers:

$$\mathbb{Q} = \left\{ rac{a}{b} : a \in \mathbb{Z}, b \in \mathbb{Z}, b
eq 0
ight\}.$$

• Write the following set by listing its elements between braces: $\{5x - 1 : x \in \mathbb{Z}\}.$

- Write the following set in set-builder notation: {2,4,8,16,32,64,...}.
- **3** Evaluate the following: $|\{\{1, \{2, \{3, 4\}\}, \emptyset\}|.$
- **④** Sketch the following sets of points in the *x*, *y*-plane: $\{(x, y) : x \in [1, 2], y \in [1, 2]\}.$

• Write the following set by listing its elements between braces: $\{5x - 1 : x \in \mathbb{Z}\}$. ANSWER: $\{\dots, -6, -1, 4, 9, 14, \dots\}$.

- Write the following set in set-builder notation: {2,4,8,16,32,64,...}.
- **3** Evaluate the following: $|\{\{1, \{2, \{3, 4\}\}, \emptyset\}|.$
- **4** Sketch the following sets of points in the x, y-plane: $\{(x, y) : x \in [1, 2], y \in [1, 2]\}.$

• Write the following set by listing its elements between braces: $\{5x - 1 : x \in \mathbb{Z}\}$. ANSWER: $\{\dots, -6, -1, 4, 9, 14, \dots\}$.

- **2** Write the following set in set-builder notation: $\{2, 4, 8, 16, 32, 64, \dots\}$. ANSWER: $\{2^n : n \in \mathbb{N}\}$.
- **3** Evaluate the following: $|\{\{1, \{2, \{3, 4\}\}, \emptyset\}|.$
- General Sketch the following sets of points in the x, y-plane: {(x, y) : x ∈ [1, 2], y ∈ [1, 2]}.

- Write the following set by listing its elements between braces: $\{5x 1 : x \in \mathbb{Z}\}$. ANSWER: $\{\dots, -6, -1, 4, 9, 14, \dots\}$.
- 2 Write the following set in set-builder notation: $\{2, 4, 8, 16, 32, 64, \ldots\}$. ANSWER: $\{2^n : n \in \mathbb{N}\}$.
- Section 2 (1, {2, {3,4}}, ∅)|. ANSWER: 2 (the elements are {1, {2, {3,4}} and ∅).

П

④ Sketch the following sets of points in the *x*, *y*-plane: $\{(x, y) : x \in [1, 2], y \in [1, 2]\}.$

- Write the following set by listing its elements between braces: $\{5x 1 : x \in \mathbb{Z}\}$. ANSWER: $\{\dots, -6, -1, 4, 9, 14, \dots\}$.
- 2 Write the following set in set-builder notation: $\{2, 4, 8, 16, 32, 64, \ldots\}$. ANSWER: $\{2^n : n \in \mathbb{N}\}$.
- Section 2 (1, {2, {3,4}}, ∅)|. ANSWER: 2 (the elements are {1, {2, {3,4}} and ∅).
- General Sketch the following sets of points in the x, y-plane: {(x, y) : x ∈ [1, 2], y ∈ [1, 2]}. ANSWER:

Homework.

- 1 Read Section 1.1.
- Write up the following exercises: Section 1.1: 8, 16, 22, 28, 33, 38.

	New LATEX commands
{}	\{\}
\mathbb{N}	\bbn
\mathbb{Z}	\bbz
\mathbb{Q}	\bbq
\mathbb{R}	\bbr
\in	\in
¢	\notin
\neq	\ne
A	A
#A	\# A
Ø	<pre>\varnothing (also \emptyset)</pre>

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶