Section 2.6 Logical statements II

Ρ	Q	$P \Rightarrow Q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

<i>P</i>		$P \Rightarrow Q$		
	Т	Т	F	F
Т	F	F	Т	F
F	Т	Т	F	T
F	F	Т	Т	Т

						$(\sim Q) \Rightarrow (\sim P)$
	Γ	Т	Т	F	F	Т
٦	Γ	F	F	Т	F	F
		T	Т	F	T	Т
F	=	F	Т	Т	T	Т

Р	Q	$P \Rightarrow Q$	$\sim Q$	$\sim P$	$(\sim Q) \Rightarrow (\sim P)$
Т	Т	Т	F	F	Т
Т	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Two statements, X and Y, are *logically equivalent* if X and Y have identical columns in a truth table. That is, X is true if and only if Y is true.

The statements $P \Rightarrow Q$ and $(\sim Q) \Rightarrow (\sim P)$ are logically equivalent.

Ρ	Q	$P \Rightarrow Q$	$\sim Q$	$\sim P$	$(\sim Q) \Rightarrow (\sim P)$
Т	Т	Т	F	F	Т
T	F	F	Т	F	F
F	Т	Т	F	Т	Т
F	F	Т	Т	Т	Т

Two statements, X and Y, are *logically equivalent* if X and Y have identical columns in a truth table. That is, X is true if and only if Y is true.

The statements $P\Rightarrow Q$ and $(\sim Q)\Rightarrow (\sim P)$ are logically equivalent.

Definition

The *contrapositive* of $P \Rightarrow Q$ is $(\sim Q) \Rightarrow (\sim P)$.

The *contrapositive* of $P \Rightarrow Q$ is $(\sim Q) \Rightarrow (\sim P)$. These two statements are logically equivalent.

Examples:

If it rains heavily, then the rivers will swell. If the rivers did not swell, then it did not rain heavily.

The *contrapositive* of $P \Rightarrow Q$ is $(\sim Q) \Rightarrow (\sim P)$. These two statements are logically equivalent.

Examples:

If it rains heavily, then the rivers will swell.

If the rivers did not swell, then it did not rain heavily.

$$(x \in A \Rightarrow x \in B) \Leftrightarrow (x \notin B \Rightarrow x \notin A).$$

$$(x \in A \Rightarrow x \notin \overline{A}) \Leftrightarrow (x \in \overline{A} \Rightarrow x \notin A).$$

- $2 \sim (P \vee Q) \Leftrightarrow (\sim P) \wedge (\sim Q).$

- $\bullet \sim (P \land Q) \Leftrightarrow (\sim P) \lor (\sim Q).$
- $2 \sim (P \vee Q) \Leftrightarrow (\sim P) \wedge (\sim Q).$

Proof.

To show that the statements above are logically equivalent, we must show that these statements have identical columns in a truth table.

P	Q	$P \wedge Q$
Т	Т	T
Т	F	F
F	Т	F
F	F	F

- $\bullet \sim (P \land Q) \Leftrightarrow (\sim P) \lor (\sim Q).$
- $2 \sim (P \vee Q) \Leftrightarrow (\sim P) \wedge (\sim Q).$

Proof.

To show that the statements above are logically equivalent, we must show that these statements have identical columns in a truth table.

Ρ	Q	$P \wedge Q$	$\sim (P \wedge Q)$
Т	Т	T	F
Т	F	F	T
F	T	F	T
F	F	F	Т

- $\bullet \sim (P \land Q) \Leftrightarrow (\sim P) \lor (\sim Q).$
- $2 \sim (P \vee Q) \Leftrightarrow (\sim P) \wedge (\sim Q).$

Proof.

To show that the statements above are logically equivalent, we must show that these statements have identical columns in a truth table.

Ρ	Q	$P \wedge Q$	$\sim (P \wedge Q)$	$\sim P$	$\sim Q$
Т	Т	Т	F	F	F
Т	F	F	T	F	Т
F	Т	F	Т	Т	F
F	F	F	Т	Т	Т

- $\bullet \sim (P \land Q) \Leftrightarrow (\sim P) \lor (\sim Q).$
- $2 \sim (P \vee Q) \Leftrightarrow (\sim P) \wedge (\sim Q).$

Proof.

To show that the statements above are logically equivalent, we must show that these statements have identical columns in a truth table.

1

Ρ	Q	$P \wedge Q$	$\sim (P \wedge Q)$	$\sim P$	$\sim Q$	$(\sim P) \lor (\sim Q)$
Т	Т	T	F	F	F	F
Т	F	F	T	F	Т	T
F	T F	F	Т	Т	F	Т
F	F	F	Т	Т	Т	Т

Homework.

- Read Section 2.6.
- **2** Write up the following exercises. Section 2.6: 9, 11.

New LATEX commands

Tables are created using the tabular environment.

The number of columns is specified immediately after the begin{tabular} command. In this example, $\{c|c|c\}$ creates a table with three centered columns. The vertical bar | places a vertical line between the columns. Columns can also be right (r) or left (1) justified. For example, the command $\{rlllr\}$ would create a table with five columns, where the first and last columns are right justified, and the middle three are left justified.

Use & to separate text between columns. Use a double backslash to create a new line in the table. The \hline command creates a horizontal line.

```
\begin{tabular}{c|c|c} $P$ & $Q$ & $P \and Q$ \\hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \\ \end{tabular}
```

Ρ	Q	$P \wedge Q$
Т	Т	T
Т	F	F
F	Т	F
F	F	F