Sections 2.7 and 2.8 Logical statements III

Let P and Q be statements. The statement "there exists P such that Q" is true if there is at least one case where P is true and Q is true. The statement is false if P is false whenever Q is true.

Let P and Q be statements. The statement "there exists P such that Q" is true if there is at least one case where P is true and Q is true. The statement is false if P is false whenever Q is true.

Examples:

1 There exists an integer n for which 2n is an integer. True (in fact, true for all integers).

Let P and Q be statements. The statement "there exists P such that Q" is true if there is at least one case where P is true and Q is true. The statement is false if P is false whenever Q is true.

Examples:

- **1** There exists an integer n for which 2n is an integer. True (in fact, true for all integers).
- **2** There exists an integer n for which n/2 is an integer. True (for some, though not all, integers).

Let P and Q be statements. The statement "there exists P such that Q" is true if there is at least one case where P is true and Q is true. The statement is false if P is false whenever Q is true.

Examples:

- **1** There exists an integer n for which 2n is an integer. True (in fact, true for all integers).
- **2** There exists an integer n for which n/2 is an integer. True (for some, though not all, integers).
- 3 There exists an integer n for which $n + \frac{1}{2}$ is an integer. False (for all integers).

Contrast with if-then statements.

- 1 There exists an integer n for which 2n is an integer. True. If n is an integer, then 2n is an integer. True.
- 2 There exists an integer n for which n/2 is an integer. True. If n is an integer, then n/2 is an integer. False.
- 3 There exists an integer n for which $n + \frac{1}{2}$ is an integer. False. If n is an integer, then $n + \frac{1}{2}$ is an integer. False.

Set theoretic interpretation.

- **1** There exists an integer n for which 2n is an integer. True. $\{n \in \mathbb{Z} : 2n \in \mathbb{Z}\} = \mathbb{Z}$
- **2** There exists an integer n for which n/2 is an integer. True. $\{n \in \mathbb{Z} : n/2 \in \mathbb{Z}\} = \{2m : m \in \mathbb{Z}\}\$ (the set of even integers)
- **3** There exists an integer n for which $n+\frac{1}{2}$ is an integer. False. $\{n\in\mathbb{Z}:n+\frac{1}{2}\in\mathbb{Z}\}=\varnothing$

Set theoretic interpretation.

- **1** There exists an integer n for which 2n is an integer. True. $\{n \in \mathbb{Z} : 2n \in \mathbb{Z}\} = \mathbb{Z}$
- **2** There exists an integer n for which n/2 is an integer. True. $\{n \in \mathbb{Z} : n/2 \in \mathbb{Z}\} = \{2m : m \in \mathbb{Z}\}\$ (the set of even integers)
- **3** There exists an integer n for which $n+\frac{1}{2}$ is an integer. False. $\{n\in\mathbb{Z}:n+\frac{1}{2}\in\mathbb{Z}\}=\varnothing$

A there-exists statement is true if and only if the "solution set" is non-empty.

Let P and Q be statements. The statement "Q for all P" (also "for all P, [we have] Q") is equivalent to the statement "if P, then Q".

Let P and Q be statements. The statement "Q for all P" (also "for all P, [we have] Q") is equivalent to the statement "if P, then Q".

Examples:

1 The number 2n is an integer for all $n \in \mathbb{Z}$. For all $n \in \mathbb{Z}$, the number 2n is an integer. If n is an integer, then 2n is an integer. True.

Let P and Q be statements. The statement "Q for all P" (also "for all P, [we have] Q") is equivalent to the statement "if P, then Q".

Examples:

- **1** The number 2n is an integer for all $n \in \mathbb{Z}$. For all $n \in \mathbb{Z}$, the number 2n is an integer. If n is an integer, then 2n is an integer. True.
- **2** The number n/2 is an integer for all $n \in \mathbb{Z}$. For all $n \in \mathbb{N}$, the number n/2 is an integer. If n is an integer, then n/2 is an integer. False.

Let P and Q be statements. The statement "Q for all P" (also "for all P, [we have] Q") is equivalent to the statement "if P, then Q".

Examples:

- **1** The number 2n is an integer for all $n \in \mathbb{Z}$. For all $n \in \mathbb{Z}$, the number 2n is an integer. If n is an integer, then 2n is an integer. True.
- **2** The number n/2 is an integer for all $n \in \mathbb{Z}$. For all $n \in \mathbb{N}$, the number n/2 is an integer. If n is an integer, then n/2 is an integer. False.
- **3** The number $n + \frac{1}{2}$ is an integer for all $n \in \mathbb{Z}$. For all $n \in \mathbb{N}$, the number $n + \frac{1}{2}$ is an integer. If n is an integer, then $n + \frac{1}{2}$ is an integer. False.

Existential quantifier	\exists	"there exists"
Universal quantifier	A	"for all" "for each" "for every" "for any"

The symbol \forall is ambiguous. Refrain from using \forall in formal writing. Write out the words instead.

Existential quantifier	3	"there exists"
Universal quantifier	A	"for all" "for each" "for every" "for any"

The symbol \forall is ambiguous. Refrain from using \forall in formal writing. Write out the words instead.

Everyone sat on the couch.

Each person sat on the couch.

Existential quantifier	3	"there exists"
Universal quantifier	A	"for all" "for each" "for every" "for any"

The symbol \forall is ambiguous. Refrain from using \forall in formal writing. Write out the words instead.

Everyone (together) sat on the couch (as one).

Each person (individually) sat on the couch (at some point).

This statement is false if " $n \in \mathbb{Z}$ " is true, but "there exists an $D \in \mathbb{N}$ such that D < n" is false.

This statement is false if " $n \in \mathbb{Z}$ " is true, but "there exists an $D \in \mathbb{N}$ such that D < n" is false.

Given $n \in \mathbb{Z}$, is it possible to find a $D \in \mathbb{N}$ that is less than n?

This statement is false if " $n \in \mathbb{Z}$ " is true, but "there exists an $D \in \mathbb{N}$ such that D < n" is false.

Given $n \in \mathbb{Z}$, is it possible to find a $D \in \mathbb{N}$ that is less than n? In general, no. If n = -2, then no such D exists.

(The original statement is false.)

This statement is false if " $n \in \mathbb{Z}$ " is true, but "there exists a $D \in \mathbb{N}$ such that D > n" is false.

This statement is false if " $n \in \mathbb{Z}$ " is true, but "there exists a $D \in \mathbb{N}$ such that D > n" is false.

Given $n \in \mathbb{Z}$, is it possible to find a $D \in \mathbb{N}$ that is greater than n?

This statement is false if " $n \in \mathbb{Z}$ " is true, but "there exists a $D \in \mathbb{N}$ such that D > n" is false.

Given $n \in \mathbb{Z}$, is it possible to find a $D \in \mathbb{N}$ that is greater than n?

Yes. Given n, let D = |n| + 1.

(The original statement is true.)

True. Given n, let D = |n| + 1.

$$-3 < 4$$
 5 < 6

True. Given n, let D = |n| + 1.

$$-3 < 4$$
 5 < 6 10 < 11

The value D depends on n. There does not exist a number D that works for all n.

True. Given n, let D = |n| + 1.

$$-3 < 4$$
 5 < 6 10 < 11

The value D depends on n. There does not exist a number D that works for all n.

There exists a $D \in \mathbb{N}$ such that D > n for all $n \in \mathbb{Z}$.

Given $D \in \mathbb{N}$, is D > n for all $n \in \mathbb{Z}$?

True. Given n, let D = |n| + 1.

$$-3 < 4$$
 5 < 6 10 < 11

The value D depends on n. There does not exist a number D that works for all n.

There exists a $D \in \mathbb{N}$ such that D > n for all $n \in \mathbb{Z}$. (False.)

Given $D \in \mathbb{N}$, is D > n for all $n \in \mathbb{Z}$?

No. Given D, we have $D \geqslant D+1$ and $D+1 \in \mathbb{Z}$.

For each $n \in \mathbb{Z}$, there exists a $D \in \mathbb{N}$ such that D > n. (True.) The value D depends on n.

There exists a $D \in \mathbb{N}$ such that $\sin(n) < D$ for all $n \in \mathbb{Z}$.

For each $n \in \mathbb{Z}$, there exists a $D \in \mathbb{N}$ such that D > n. (True.) The value D depends on n.

There exists a $D \in \mathbb{N}$ such that $\sin(n) < D$ for all $n \in \mathbb{Z}$.

True,

so D=2 satisfies this statement.

In this case, D is independent of n. The same number D works for every n.

Homework.

- 1 Read Sections 2.7 and 2.8.
- Write up the following exercises: Section 2.7: 1–6. If a statement is false, explain why (give an example, if possible).

New LATEX commands

∀ \forall

∃ \exists