Hello world! A First Proof

Let A and B be sets, then A = B if A and B contain exactly the same elements.

sets are equal \Leftrightarrow elements are the same

Let A and B be sets, then A = B if A and B contain exactly the same elements.

sets are equal \Leftrightarrow elements are the same If A=B and $x\in A$, then . . .

Let A and B be sets, then A = B if A and B contain exactly the same elements.

sets are equal \Leftrightarrow elements are the same If A=B and $x\in A$, then $x\in B$.

Let A and B be sets, then A = B if A and B contain exactly the same elements.

sets are equal

 \Leftrightarrow

elements are the same

If A = B and $x \in A$, then $x \in B$.

If A = B and $x \in B$, then ...

E

Let A and B be sets, then A = B if A and B contain exactly the same elements.

sets are equal

 \Leftrightarrow

elements are the same

If A = B and $x \in A$, then $x \in B$. If A = B and $x \in B$, then $x \in A$.

Let A and B be sets, then A = B if A and B contain exactly the same elements.

Know: Given that A = B, we know that

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$.

Let A and B be sets, then A = B if A and B contain exactly the same elements.

Know: Given that A = B, we know that

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$.

Show: How would you show that two sets are equal?

Let A and B be sets, then A = B if A and B contain exactly the same elements.

Know: Given that A = B, we know that

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$.

Show: How would you show that two sets are equal? Knowing

- if $x \in A$, then $x \in B$, and
- if $x \in B$, then $x \in A$,

would *show* that A = B.

Definition

Let A and B be sets, then A = B if $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$.

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then ...

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then $x \in B$.

Know: Given that $A \subseteq B$, we know that if $x \in A$, then $x \in B$.

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then $x \in B$.

Know: Given that $A \subseteq B$, we *know* that if $x \in A$, then $x \in B$.

Show: Knowing ...

... would *show* that $A \subseteq B$.

Let A and B be sets, then $A \subseteq B$ if every element of A is also an element of B.

If $A \subseteq B$ and $x \in A$, then $x \in B$.

Know: Given that $A \subseteq B$, we *know* that if $x \in A$, then $x \in B$.

Show: Knowing if $x \in A$, then $x \in B$

would *show* that $A \subseteq B$.

Let A and B be sets, then $A \subseteq B$ if $x \in A \Rightarrow x \in B$.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

"Knowing that A and B are sets and A = B, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and A = B.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

"Knowing that A and B are sets and A = B, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and A = B. Then $x \in A \Rightarrow x \in B$ by the definition of set equality.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$.

"Knowing that A and B are sets and A = B, show that $A \subseteq B$."

Proof.

Suppose that A and B are sets, and A = B. Then $x \in A \Rightarrow x \in B$ by the definition of set equality. Thus by the definition of subset, we conclude that $A \subseteq B$.

Theorem

Let A and B be sets. If A = B, then $A \subseteq B$ and $B \subseteq A$.

Theorem

Let A and B be sets. If $A \subseteq B$ and $B \subseteq A$, then A = B.

Once you've written these proofs, complete the following card:

$$x \in A \Rightarrow x \in B$$
 $x \notin B \Rightarrow$

Prove the following.

Theorem

Let A, B, and C be sets where $\overline{A} = B$ and $\overline{B} = C$. Then A = C.