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Proving A = C is the same as showing A = A,
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Theorem
Let A, B, and C be sets where B= A and C = B. Then A= C.

Proof.

We use a double inclusion argument to prove that A= C. That is,
we will show that A C C and C C A.

Theorem (Double inclusion principle)

Let A and B be sets. Then A= B ifand only if AC B and B C A.



Theorem
Let A, B, and C be sets where B= A and C = B. Then A= C.

Proof.

We use a double inclusion argument to prove that A= C. That is,
we will show that A C C and C C A.

(C C A): In order to show that C C A, we show that every
element of C is an element of A. Namely, x € C = x € A.

Definition (Subset)
Let A and B be sets. Then AC Bif xe A= x € B.
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Proof.

We use a double inclusion argument to prove that A= C. That is,
we will show that A C C and C C A.

(C C A): In order to show that C C A, we show that every
element of C is an element of A. Namely, x € C = x € A.

Suppose x € C. Then

xeC=x€eB (since C = B)
=x¢B (by def. of converse of B)
=x¢A (since B = A)
=x€cA (by def. of converse of A).

Thus C C A by the definition of subset.
(A C C): [Exercise.]
Since C C A and A C C, we conclude that A= C. ]



