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Proving A = C is the same as showing A = A.
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Proof.

We use a double inclusion argument to prove that A = C . That is,
we will show that A ⊆ C and C ⊆ A.
. . .

Theorem (Double inclusion principle)

Let A and B be sets. Then A = B if and only if A ⊆ B and B ⊆ A.
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Proof.

We use a double inclusion argument to prove that A = C . That is,
we will show that A ⊆ C and C ⊆ A.

(C ⊆ A): In order to show that C ⊆ A, we show that every
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. . .

Definition (Subset)
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(C ⊆ A): In order to show that C ⊆ A, we show that every
element of C is an element of A. Namely, x ∈ C ⇒ x ∈ A.

Suppose x ∈ C . Then
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(A ⊆ C ): [Exercise.]

Since C ⊆ A and A ⊆ C , we conclude that A = C .


