MATH 2001

Definition. Let A be a set. A basis for a topology on A is a collection \mathcal{B} of subsets of A (called basis elements) that satisfies the following.

- (1) For each $x \in A$, there exists a $B \in \mathcal{B}$ such that $x \in B$.
- (2) If B_1 and B_2 are any two elements in \mathscr{B} and $x \in B_1 \cap B_2$, then there exists a $B_3 \in \mathscr{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$.
- \star **Exercise.** In each of the following cases, prove that \mathscr{B} is a basis for a topology on A, or explain why it is not.
 - a) $A = \{a, b, c, d, e\}$, and $\mathscr{B} = \{\{a, b\}, \{c, d\}, \{c, d, e\}\}$.
 - b) A is a set, and $\mathscr{B} = \mathscr{P}(A)$.
 - c) A is a set, and $\mathscr{B} = \{X \in \mathscr{P}(A) : |X| = 3\}.$
 - d) $A = \mathbb{R}$, and $\mathscr{B} = \{(a, b) \subset \mathbb{R} : a, b \in \mathbb{R}\}$. (The interval (a, b) is the set $\{x \in \mathbb{R} : a < x < b\}$.)
 - e) $A = \mathbb{R}$, and $\mathscr{B} = \{[a, b) \subset \mathbb{R} : a, b \in \mathbb{R}\}$. (The interval [a, b) is the set $\{x \in \mathbb{R} : a \leq x < b\}$.)
 - f) $A = \mathbb{R}$, and $\mathscr{B} = \{[a, b] : a, b \in \mathbb{R}\}$. (The interval [a, b] is the set $\{x \in \mathbb{R} : a \le x \le b\}$.)
 - g) $A = \mathbb{R}$, and $\mathscr{B} = \{(a-1, a+1) \subset \mathbb{R} : a \in \mathbb{R}\}.$
 - h) $A = \mathbb{R}$, and $\mathscr{B} = \left\{ \overline{\{x\}} : x \in \mathbb{R} \right\}$.
 - i) $A = \mathbb{R}$, and $\mathscr{B} = \{\overline{C} : C \subset \mathbb{R}, C \text{ is a finite set}\}$. (That is, $B \in \mathscr{B} \text{ if } B = \mathbb{R} C \text{ for some finite set } C.)$