MATH 2001

Recall that the statement $P\Rightarrow Q$ is equivalent to its contrapositive $(\sim Q)\Rightarrow (\sim P)$.

General outline of a proof of $P\Rightarrow Q$ via contrapositive: Proof. Suppose $(\sim Q).$... Therefore $(\sim P).$ Thus $P\Rightarrow Q.$ Example 1. Prove that if $y^3+yx^2\leq x^3+xy^2$, then $y\leq x$. Proof.

Example 2. Prove, by contrapositive, that if $x^3 - 1$ is even, then x is odd. *Proof.*

2 MATH 2001

A third method of proof is the <i>proof by contradiction</i> .	Suppose we wanted to prove the statement
P. To prove the statement by contradiction, we show t	that if P is false, then absurdity ensues.

General o	utline o	f a	proof	of	P	$\mathbf{b}\mathbf{y}$	contradiction:
-----------	----------	-----	-------	----	---	------------------------	----------------

Proof. Suppose $(\sim P)$ Contradiction! Therefore P.

Example 3. Prove that there is no integer that is both even and odd.

Proof.

Example 4. Prove that $\sqrt{2}$ is irrational.

Proof.

Homework. Due 6pm on Friday, October 9.

Chapter 6: 3, 8, 14.

Suggested reading: Chapter 6.