
MATH 2001 BINOMIAL COEFFICIENTS

Example 3. Prove that the sum of values on the *n*-th shallow diagonal is the *n*-th Fibonacci number.

Proof.

Example 4. Prove that the alternating sum of values on the n-th row of Pascal's triangle is 0. Proof.

Homework. Four proofs due 6pm on Tuesday, October 27.

- Prove that if a, b, c ∈ N and c ≤ b ≤ a, then (^a_b)(^b_c) = (^a_{b-c})(^{a-b+c}_c).
 Prove that ∑ⁿ_{j=0} ∑^j_{k=0} (^j_k) = 2ⁿ⁺¹ 1. In other words, prove that the sum of all values in the first n rows (row 0 up to row n) is equal to 2ⁿ⁺¹ 1.
- (3) Prove that $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$.

Suggested reading: Chapter 3.