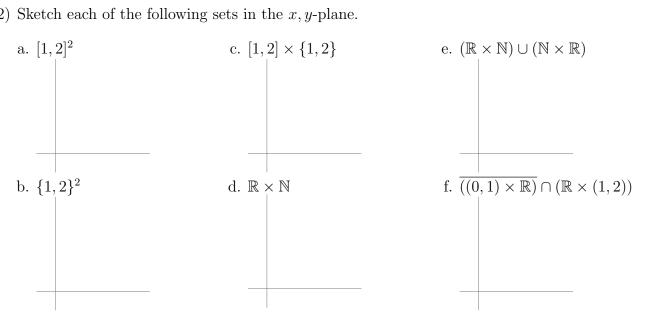
MATH 2001

(1) Let $A = \{a, b, \{a, b\}, \mathbb{Z}\}$. Determine whether the following statements are true or false.

a.	\mathbf{T}	\mathbf{F} :	$\varnothing \in A$	g.	\mathbf{T}	\mathbf{F} :	$\varnothing \subseteq A$
b.	\mathbf{T}	\mathbf{F} :	$\varnothing \in \mathscr{P}(A)$	h.	\mathbf{T}	\mathbf{F} :	$\varnothing \subseteq \mathscr{P}(A)$
c.	\mathbf{T}	\mathbf{F} :	$\{a,b\} \in A$	i.	\mathbf{T}	\mathbf{F} :	$\{a,b\}\subseteq A$
d.	\mathbf{T}	\mathbf{F} :	$\{a,b\}\in \mathscr{P}(A)$	j.	\mathbf{T}	\mathbf{F} :	$\{a,b\}\subseteq \mathscr{P}(A)$
e.	\mathbf{T}	\mathbf{F} :	$\{a,b\}\in A^2$	k.	\mathbf{T}	\mathbf{F} :	$\{a,b\}\subseteq A^2$
f.	\mathbf{T}	\mathbf{F} :	$1 \in A$	l.	\mathbf{T}	\mathbf{F} :	$1 \subseteq A$

For each false statement, give a brief explanation as to why the statement is not true.

(2) Sketch each of the following sets in the x, y-plane.



Let us recall a few definitions.

Definition. Two sets, A and B, are equal if they contain exactly the same elements.

Definition. The set A is a subset of the set B if every element of A is also an element of B.

These statements (and all definitions) serve two purposes. On one hand, definitions allow for a single word to encapsulate a more complicated idea. For example, if you are given that A = B, then you *know* that A and B contain exactly the same elements.

On the other hand, if you want to show that certain objects are a keyword, the definition gives conditions which the objects must satisfy. Going back to the equality example, if you want to show that A = B, then you must first show that A and B contain exactly the same elements. In other words, given two sets A and B, if you show that A and B contain exactly the same elements, then you can conclude that A = B.

The definitions above translate statements about sets $(A = B \text{ or } A \subseteq B)$ into statements about elements. One of the goals of this exercise is to make the statement about elements more precise.

(1) Suppose A = B. If $x \in A$, what can you conclude?

- (2) Write a similar statement for the case where A = B and $x \in B$.
- (3) Using these two new statements, what condition(s) would you need to satisfy in order to show that A = B? In other words, rewrite the "show" statement I have above using precise statements regarding the elements in A and B.
- (4) Suppose $A \subseteq B$. What do you know about the elements of A and B. Specifically, what can you say about $x \in A$?
- (5) What do you need to show in order to conclude that $A \subseteq B$?
- (6) Suppose you know that A = B. Use the statements you have written above to show that $A \subseteq B$ and $B \subseteq A$.
- (7) Suppose you know that $A \subseteq B$ and $B \subseteq A$. Use the statements you have written above to show that A = B.

What you have shown is that the statement "A = B" is equivalent to the statement " $A \subseteq B$ and $B \subseteq A$ ". When trying to show that two sets are equal, it is often easier to use this *double containment* statement to break the work up into two steps: to show that A = B, first show that $A \subseteq B$, then show that $B \subseteq A$.