Set and element		Cardinality of a set	
Definition	SETS	Definition	Sets
Empty set (null set)		Finite and infinite sets	
Definition	Sets	Definition	Sets
Ordered pair $/$ n -tuple		Cartesian product	
DEFINITION	SETS	DEFINITION	Sets
\mathbf{Subset}		Proper subset	
DEFINITION	Sets	DEFINITION	Sets
Power set		Partition	

Sets

Sets

The *cardinality* of a set is the number of elements in the set.

The cardinality of the set A is denoted by |A| or #A.

A set is a collection of objects; the objects in the set are called *elements*.

If A is a set, and a is an element of A, then we write $a \in A$.

A set is *finite* if its cardinality is finite, that is, the set contains finitely many elements.

A set is *infinite* if it contains infinitely many elements.

The *empty set* is the set that contains zero elements. The empty set is denoted by \emptyset .

If A and B are sets, the cartesian product $A \times B$ is the set of ordered pairs where the first element is from A, and the second is from B.

$$A \times B = \{(a, b) : a \in A, b \in B\}.$$

$$(a,b) \in A \times B \qquad \Leftrightarrow \qquad a \in A \text{ and } b \in B$$

An ordered pair is an ordered list of two elements. More generally, an ordered n-tuple is an ordered list of n elements. The standard notation is to use a comma separated list enclosed by parenthesis: (a_1, a_2, \ldots, a_n) .

The set B is a proper subset of A if B is a subset of A that is not equal A, and we write $B \subset A$.

$$B \subset A$$

$$\Leftrightarrow B \subseteq A \text{ and } B \neq A$$

A set
$$A$$
 is a *subset* of a set B if every element of A is an element of B .

$$A \subseteq B$$

$$\Rightarrow x \in A \Rightarrow x \in B$$

Let A be a set, and let $P \subseteq \mathscr{P}(A)$. The set P is a partition of A if

1.
$$\bigcup_{X \in P} X = A$$
;

2. if
$$X_1, X_2 \in P$$
, then $X_1 \cap X_2 = \emptyset \Leftrightarrow X_1 \neq X_2$.

The power set of a set A is the set of all subsets of A. The power set of A is denoted by $\mathcal{P}(A)$.

$$\mathscr{P}(A) = \{B : B \subseteq A\}$$

Set equality		Union	
DEFINITION	SETS	DEFINITION	Sets
Finite and infinite union		Intersection	
DEFINITION	Sets	Definition	SETS
Finite and infinite intersection		Set difference	
DEFINITION	Sets	Theorem	Sets
Disjoint sets		Double containment principle	
DEFINITION	Sets	Тнеогем	Sets
Complement		De Morgan's laws	

Sets Sets

The union of two sets, A and B, is the set of all element in A or in B.

The union of these sets is denoted by $A \cup B$.

$$A \cup B = \{x : x \in A \text{ or } x \in B\}$$

 $x \in A \cup B$

 $x \in A \text{ or } x \in B$ \Leftrightarrow

Two sets, A and B, are equal if all the elements of Aare elements of B and vice versa.

$$A = B$$

 $x \in A$ if and only if $x \in B$

The *intersection* of two sets, A and B, is the set of all element in A and in B.

The intersection of these sets is denoted by $A \cap B$.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

 $x\in A\cap B$

 $x \in A$ and $x \in B$ \Leftrightarrow

A finite union is the union of finitely many sets. An *infinite union* is the union of infinitely many sets.

Let
$$A_1, A_2, A_3, \ldots$$
 be sets, then

$$\bigcup_{i=1}^{n} A_i = \{x : x \in A_i \text{ for some } 1 \le i \le n\}$$

$$\bigcup_{i \in \mathbb{N}} A_i = \{x : x \in A_i \text{ for some } i \in \mathbb{N}\}$$

$$\bigcup_{i \in \mathbb{N}} A_i = \{x : x \in A_i \text{ for some } i \in \mathbb{N}\}$$

If A and B are sets, the, is the difference A - B is the set of elements in A that are not in B.

$$A - B = \{x : x \in A \text{ and } x \notin B\}$$

$$x \in A - B$$

 $x \in A \text{ and } x \notin B$

A finite intersection is the intersection of finitely many sets. An *infinite intersection* is the intersection of infinitely many sets.

Let
$$A_1, A_2, A_3, \ldots$$
 be sets, then

$$\bigcap_{i=1}^n A_i = \{x: x \in A_i \text{ for all } 1 \leq i \leq n\}$$

$$\bigcap_{i \in \mathbb{N}} A_i = \{x: x \in A_i \text{ for all } i \in \mathbb{N}\}$$

$$\bigcap_{i \in \mathbb{N}} A_i = \{x : x \in A_i \text{ for all } i \in \mathbb{N}\}\$$

Let A and B be sets. Then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

$$A = B$$

$$\Leftrightarrow$$
 $A \subseteq B$ and $B \subseteq A$

Two sets, A and B, are disjoint if $A \cap B = \emptyset$.

For any sets A and B,

$$(A \cap B)^c = A^c \cup B^c$$
,

$$(A \cup B)^c = A^c \cap B^c$$
.

The *complement* of a set A is the set of all elements that are not in A, and is denoted by A^c or \overline{A} . If $A \subseteq B$, then the complement of A in B is the set of elements in B that are not in A, i.e. $A^c = B - A$.

$$A^c = \{x : x \notin A\}$$

$$x \in A^c$$

	Statement		Logical statement	
DEFINITION		Logic	DEFINITION	Logic
	Logical and		Logical or	
DEFINITION		Logic	Definition	Logic
	Logical negation		Implies	
DEFINITION		Logic	Definition	Logic
	Converse		If and only if	
DEFINITION		Logic	Definition	Logic
	Contrapositive		Universal quantifier: for all	

Logic

Logic

A *statement* is a sentence or mathematical expression that is definitely true or definitely false.

A *statement* is a sentence or mathematical expression that is definitively true or definitively false.

The statement "P or Q" is true if P is true or Q is true (or both statements are true). The statement "P and Q" is false only if both P is false and Q is false.

The statement "P and Q" is true if both P is true and Q is true. Otherwise "P and Q" is false.

 $P \vee Q$ is true

 \Leftrightarrow P is true or Q is true

 $P \wedge Q$ is true $\qquad \Leftrightarrow \qquad P$ is true and Q is true

The statement "P implies Q" $(P \Rightarrow Q)$ is false if P is true and Q is false. Otherwise the statement is true.

 $P\Rightarrow Q$ is false $\qquad\Leftrightarrow\qquad P$ is false and Q is true

The negation of a statement P is the statement $\neg P$. The statement $\neg P$ is true if P is true. The statement of $\neg P$ is false if P is true.

$$P$$
 is true (resp. false) \Leftrightarrow $\neg P$ is false (resp. true)

The statement "P if and only if Q" $(P \Leftrightarrow Q)$ is equivalent to the statement $(P \Rightarrow Q) \land (Q \Rightarrow P)$. In other words, $P \Leftrightarrow Q$ is true if both $P \Rightarrow Q$ and $Q \Rightarrow P$ are true.

$$P \Leftrightarrow Q \qquad \Leftrightarrow (P \Rightarrow Q) \land (Q \Rightarrow P)$$

The converse of $P \Rightarrow Q$ is the statement $Q \Rightarrow P$. In general, these two statements are independent, meaning that the truthfulness of one statement does not determine the truthfulness of the other.

The for all/each/every/any statement takes the form: "for all P, we have Q." In other words, Q is true whenever P is true. In this light, "for all" statements can often be reworded as "if-then" statements (and vice versa).

The contrapositive of the statement "if P, then Q" is the statement "if $\neg Q$, then $\neg P$ ". These statements are equivalent, meaning that they are either both true or both false.

$$\forall P$$
, we have $Q \Leftrightarrow P \Rightarrow Q$

$$P \Rightarrow Q \qquad \qquad \Leftrightarrow \qquad \neg Q \Rightarrow \neg P$$

Existential quantifier: there exi	sts	Negation of $P \wedge Q$	
	Logic		Logic
Negation of $P \lor Q$		Negation of $P \Rightarrow Q$	
	Logic		Logic
Negation of $\forall P$, we have Q		Negation of $\exists P$ such that Q	
	Logic		Logic
DEFINITION		DEFINITION	
Theorem		Proof	
Definition	Logic	DEFINITION	Logic
Definition		List and entries	

Logic

Counting

$$\neg (P \land Q) = \neg P \lor \neg Q$$

The there exists statement takes the form: "there exists P such that Q." This statement is true if there is at least one case where P is true and Q is true. (It maybe that there are many cases where P is false but Q is true.)

 $\exists P \text{ such that } Q \qquad \Leftrightarrow \quad \text{it is sometimes the}$ case that $P \Rightarrow Q$

$$\neg(P \Rightarrow Q) = P \land \neg Q$$

$$\neg (P \lor Q) = \neg P \land \neg Q$$

$$\neg(\exists P, \text{ such that } Q) = \forall P \text{ we have } \neg Q$$

$$\neg(\forall P, \text{ we have } Q) = \exists P, \text{ such that } \neg Q$$

A *proof* of a theorem is a written verification that shows that the theorem is definitely and unequivocally true.

A *theorem* is a mathematical statement that is true and can be (and has been) verified as true.

A *list* is an ordered sequence of objects. The objects in the list are called *entries*. Unlike sets, the order of entries matters, and entries may be repeated.

A definition is an exact, unambiguous explanation of the meaning of a mathematical word or phrase.

	List length		List equality	
DEFINITION		Counting	Тнеокем	Counting
	Empty list		Multiplication principl	e
DEFINITION		Counting	Definition	Counting
	Factorial		n choose k	
Theorem		Counting	Theorem	Counting
	Binomial theorem		Inclusion-exclusion	
Theorem		Counting	Definition	Counting
	Addition principle		Even	
		Counting		Comming

Counting

Counting

Two lists L and M are equal if they have the same length, and the i-th entry of L is the i-th entry of M.

The *length* of a list is the number of entries in the list.

Suppose in making a list of length n there are a_i possible choices for the i-th entry. Then the total number of different lists that can be made in this way is $a_1a_2a_3\cdots a_n$.

The *empty list* is the list with no entries, and is denoted by ().

If n and k are integers, and $0 \le k \le n$, then

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

If n is a non-negative integer, then n! is the number of non-repetitive lists of length n that can be made from n symbols. Thus 0! = 1, and if n > 1, then n! is the product of all integers from 1 to n. That is, if n > 1, then $n! = n(n-1)(n-2)\cdots 2\cdot 1$.

If A and B are sets, then $|A \cup B| = |A| + |B| - |A \cap B|$.

If n is a non-negative integer, then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

An integer a is even if there exists an integer b such that a=2b.

 $a ext{ is even} \qquad \Leftrightarrow \quad a =$

 $\Leftrightarrow a = 2b \text{ for some } b \in \mathbb{Z}$

If A_1, A_2, \ldots, A_n are disjoint sets, then $|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|$.

Odd		Divides	
Definition	Counting	DEFINITION	Counting
Parity		Prime	
Definition	Counting	Definition	Counting
${f Composite}$		Greatest common diviso	or
Definition	Counting	Тнеогем	Counting
Least common multipl	${f e}$	Well-ordering principle	9
Тнеокем	Counting	DEFINITION	Counting
Division algorithm		Basis for a topology	

Counting

Topology

If a and b are integers, then b divides a if there exists
an integer q such that $a = qb$. In this case, b is a
divisor of a, and a is a multiple of b.

that a = 2b + 1.

An integer a is odd if there exists an integer b such

 $b \mid a$

 $\Leftrightarrow a = qb \text{ for some } q \in \mathbb{Z}$

a is odd

 $\Leftrightarrow \quad a = 2b + 1 \text{ for some} \\ b \in \mathbb{Z}$

A positive integer p > 1 is *prime* if the only divisors of p are 1 and p.

p > 1 is prime

 \Leftrightarrow a has exactly two positive divisors: 1 and p

Two integers have the *same parity* if they are both even or both odd. Otherwise they have *opposite parity*.

The greatest common divisor of two integers a and b, denoted gcd(a, b), is the largest integer that divides both a and b.

A positive integer a is *composite* if there exists a positive integer b > 1 satisfying $b \mid a$.

a > 1 is composite

 \Leftrightarrow $b \mid a \text{ and } 1 < b < a$

Every non-empty subset of $\mathbb N$ contains a least element.

The least common multiple of two integers a and b, denoted lcm(a, b), is the smallest positive integer is a multiple of both a and b.

Let A be a set, and let $\mathcal{B} \subseteq \mathscr{P}(A)$. The set \mathcal{B} is a basis for a topology on A if the following are satisfied.

- 1. If $x \in A$, then there exists $B \in \mathcal{B}$ such that $x \in B$.
- 2. If $B_1, B_2 \in \mathcal{B}$ and $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$.

Given integers a and b with b > 0, there exist unique integers q and r that satisfy a = bq + r, where 0 < r < b.

Open set			Closed set	
DEFINITION	Topology	DEFINITION		Topology
Relation on a set			Reflexive	
DEFINITION	Relations	DEFINITION		RELATIONS
Symmetric			Transitive	
DEFINITION	RELATIONS	DEFINITION		RELATIONS
Equivalence relation	n		Equivalence class	
DEFINITION	RELATIONS	DEFINITION		RELATIONS
Relation between se	ets		Inverse relation	

RELATIONS

RELATIONS

Let A be a set, let B be a basis for a topology on A, and let $U \subseteq A$. The set U is closed if U^c is open.

Let A be a set, let \mathcal{B} be a basis for a topology on A, and let $U \subseteq A$. The set U is open if for each $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.

Let R be a relation on A. The relation R is reflexive if $a \in A$ implies that $(a, a) \in R$.

Let A be a set. The set R is a relation on A if $R \subseteq A^2$.

Let R be a relation on A. The relation R is transitive if $(a,b),(b,c) \in R$ implies that $(a,c) \in R$.

Let R be a relation on A. The relation R is symmetric if $(a, b) \in R$ implies that $(b, a) \in R$.

Let R be an equivalence relation on A, and let $a \in A$. The equivalence class of a is the set

$$[a] = \{b \in A : (a, b) \in R\}.$$

Let R be a relation on A. The relation R is an equivalence relation (on A) if it is reflexive, symmetric, and transitive.

 $x \in [a]$ \Leftrightarrow $(a, x) \in R$

Let R be a relation from A to B. The *inverse* of R is the relation from B to A given by

$$R^{-1} = \{(b, a) : (a, b) \in R\}.$$

Let A and B be sets. The set R is a relation from A to B if $R \subseteq A \times B$.

 $(x,y) \in R^{-1}$ \Leftrightarrow $(y,x) \in R$

DEFINITION DEFINITION

Function

Domain/codomain/image

RELATIONS

DEFINITION DEFINITION

Image of a set

Inverse image of a set

RELATIONS RELATIONS

Let f be a function from A to B. The *domain* of f is A. The *codomain* of f is B, and the *image* of f is the set $\{b \in B : (a,b) \in f\}$. In other words, the image of f is the set $\{f(a) : a \in A\}$.

Let R be a relation from A to B. The relation R is a function if for each $a \in A$, R contains a unique element of the form (a,b). In this case, we write R(a) = b.

Let f be a function from A to B, and let $V \subseteq B$. Then the *inverse image of* V (or *preimage of* V) is the set

$$f^{-1}(V) = \{ x \in A : f(x) \in V \}.$$

$$x \in f^{-1}(V) \qquad \Rightarrow \qquad f(x) \in V$$

$$y \in V \qquad \Rightarrow \qquad y = f(x) \text{ for some }$$

$$x \in f^{-1}(V)$$

Let f be a function from A to B, and let $U \subseteq A$. Then the *image of* U is the set

$$f(U) = \{ f(x) \in B : x \in U \}.$$

$$y \in f(U)$$
 \Rightarrow $y = f(x) \text{ for some}$ $x \in U$ \Rightarrow $f(x) \in f(U)$