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The cardinality of a set is the number of elements in
the set.

The cardinality of the set A is denoted by |A| or #A.

A set is a collection of objects; the objects in the set
are called elements.

If A is a set, and a is an element of A, then we write
a ∈ A.

A set is finite if its cardinality is finite, that is, the
set contains finitely many elements.

A set is infinite if it contains infinitely many
elements.

The empty set is the set that contains zero elements.
The empty set is denoted by ∅.

If A and B are sets, the cartesian product A×B is
the set of ordered pairs where the first element is

from A, and the second is from B.

A×B = {(a, b) : a ∈ A, b ∈ B}.

(a, b) ∈ A×B ⇔ a ∈ A and b ∈ B

An ordered pair is an ordered list of two elements.
More generally, an ordered n-tuple is an ordered list

of n elements. The standard notation is to use a
comma separated list enclosed by parenthesis:

(a1, a2, . . . , an).

The set B is a proper subset of A if B is a subset of
A that is not equal A, and we write B ⊂ A.

B ⊂ A ⇔ B ⊆ A and B 6= A

A set A is a subset of a set B if every element of A is
an element of B.

A ⊆ B ⇔ x ∈ A⇒ x ∈ B

Let A be a set, and let P ⊆P(A). The set P is a
partition of A if

1.
⋃

X∈P X = A;

2. if X1, X2 ∈ P , then X1 ∩X2 = ∅⇔ X1 6= X2.

The power set of a set A is the set of all subsets of A.
The power set of A is denoted by P(A).

P(A) = {B : B ⊆ A}
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The union of two sets, A and B, is the set of all
element in A or in B.

The union of these sets is denoted by A ∪B.

A ∪B = {x : x ∈ A or x ∈ B}

x ∈ A ∪B ⇔ x ∈ A or x ∈ B

Two sets, A and B, are equal if all the elements of A
are elements of B and vice versa.

A = B ⇔ x ∈ A if and only if
x ∈ B

The intersection of two sets, A and B, is the set of all
element in A and in B.

The intersection of these sets is denoted by A ∩B.

A ∩B = {x : x ∈ A and x ∈ B}

x ∈ A ∩B ⇔ x ∈ A and x ∈ B

A finite union is the union of finitely many sets. An
infinite union is the union of infinitely many sets.

Let A1, A2, A3, . . . be sets, then

n⋃
i=1

Ai = {x : x ∈ Ai for some 1 ≤ i ≤ n}⋃
i∈N

Ai = {x : x ∈ Ai for some i ∈ N}

If A and B are sets, the, is the difference A−B is the
set of elements in A that are not in B.

A−B = {x : x ∈ A and x /∈ B}

x ∈ A−B ⇔ x ∈ A and x 6∈ B

A finite intersection is the intersection of finitely
many sets. An infinite intersection is the intersection

of infinitely many sets.
Let A1, A2, A3, . . . be sets, then

n⋂
i=1

Ai = {x : x ∈ Ai for all 1 ≤ i ≤ n}⋂
i∈N

Ai = {x : x ∈ Ai for all i ∈ N}

Let A and B be sets. Then A = B if and only if
A ⊆ B and B ⊆ A.

A = B ⇔ A ⊆ B and B ⊆ A
Two sets, A and B, are disjoint if A ∩B = ∅.

For any sets A and B,

(A ∩B)c = Ac ∪Bc,

(A ∪B)c = Ac ∩Bc.

The complement of a set A is the set of all elements
that are not in A, and is denoted by Ac or A.

If A ⊆ B, then the complement of A in B is the set
of elements in B that are not in A, i.e. Ac = B −A.

Ac = {x : x /∈ A}

x ∈ Ac ⇔ x 6∈ A
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A statement is a sentence or mathematical expression
that is definitely true or definitely false.

A statement is a sentence or mathematical expression
that is definitively true or definitively false.

The statement “P or Q” is true if P is true or Q is
true (or both statements are true). The statement “P
and Q” is false only if both P is false and Q is false.

P ∨Q is true ⇔ P is true or Q is true

The statement “P and Q” is true if both P is true
and Q is true. Otherwise “P and Q” is false.

P ∧Q is true ⇔ P is true and Q is
true

The statement “P implies Q” (P ⇒ Q) is false if P is
true and Q is false. Otherwise the statement is true.

P ⇒ Q is false ⇔ P is false and Q is
true

The negation of a statement P is the statement ¬P .
The statement ¬P is true if P is true. The statement

of ¬P is false if P is true.

P is true (resp. false) ⇔ ¬P is false (resp.
true)

The statement “P if and only if Q” (P ⇔ Q) is
equivalent to the statement (P ⇒ Q) ∧ (Q⇒ P ). In

other words, P ⇔ Q is true if both P ⇒ Q and
Q⇒ P are true.

P ⇔ Q ⇔ (P ⇒ Q) ∧ (Q⇒ P )

The converse of P ⇒ Q is the statement Q⇒ P . In
general, these two statements are independent,

meaning that the truthfulness of one statement does
not determine the truthfulness of the other.

The for all/each/every/any statement takes the
form: “for all P , we have Q.” In other words, Q is

true whenever P is true. In this light, “for all”
statements can often be reworded as “if-then”

statements (and vice versa).

∀P , we have Q ⇔ P ⇒ Q

The contrapositive of the statement “if P , then Q” is
the statement “if ¬Q, then ¬P”. These statements
are equivalent, meaning that they are either both

true or both false.

P ⇒ Q ⇔ ¬Q⇒ ¬P
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¬(P ∧Q) = ¬P ∨ ¬Q

The there exists statement takes the form: “there
exists P such that Q.” This statement is true if there
is at least one case where P is true and Q is true. (It
maybe that there are many cases where P is false but

Q is true.)

∃P such that Q ⇔ it is sometimes the
case that P ⇒ Q

¬(P ⇒ Q) = P ∧ ¬Q ¬(P ∨Q) = ¬P ∧ ¬Q

¬(∃P, such that Q) = ∀P we have ¬Q ¬(∀P, we have Q) = ∃P, such that ¬Q

A proof of a theorem is a written verification that
shows that the theorem is definitely and

unequivocally true.

A theorem is a mathematical statement that is true
and can be (and has been) verified as true.

A list is an ordered sequence of objects. The objects
in the list are called entries. Unlike sets, the order of

entries matters, and entries may be repeated.

A definition is an exact, unambiguous explanation of
the meaning of a mathematical word or phrase.
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Two lists L and M are equal if they have the same
length, and the i-th entry of L is the i-th entry of M .

The length of a list is the number of entries in the
list.

Suppose in making a list of length n there are ai
possible choices for the i-th entry. Then the total

number of different lists that can be made in this way
is a1a2a3 · · · an.

The empty list is the list with no entries, and is
denoted by ().

If n and k are integers, and 0 ≤ k ≤ n, then(
n

k

)
=

n!

k!(n− k)!
.

If n is a non-negative integer, then n! is the number
of non-repetitive lists of length n that can be made

from n symbols. Thus 0! = 1, and if n > 1, then n! is
the product of all integers from 1 to n. That is, if

n > 1, then n! = n(n− 1)(n− 2) · · · 2 · 1.

If A and B are sets, then
|A ∪B| = |A|+ |B| − |A ∩B|.

If n is a non-negative integer, then

(x + y)n =

n∑
k=0

(
n

k

)
xkyn−k.

An integer a is even if there exists an integer b such
that a = 2b.

a is even ⇔ a = 2b for some b ∈ Z

If A1, A2, . . . , An are disjoint sets, then
|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|.
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If a and b are integers, then b divides a if there exists
an integer q such that a = qb. In this case, b is a

divisor of a, and a is a multiple of b.

b | a ⇔ a = qb for some q ∈ Z

An integer a is odd if there exists an integer b such
that a = 2b + 1.

a is odd ⇔ a = 2b + 1 for some
b ∈ Z

A positive integer p > 1 is prime if the only divisors
of p are 1 and p.

p > 1 is prime ⇔ a has exactly two
positive divisors: 1

and p

Two integers have the same parity if they are both
even or both odd. Otherwise they have opposite

parity.

The greatest common divisor of two integers a and b,
denoted gcd(a, b), is the largest integer that divides

both a and b.

A positive integer a is composite if there exists a
positive integer b > 1 satisfying b | a.

a > 1 is composite ⇔ b | a and 1 < b < a

Every non-empty subset of N contains a least
element.

The least common multiple of two integers a and b,
denoted lcm(a, b), is the smallest positive integer is a

multiple of both a and b.

Let A be a set, and let B ⊆P(A). The set B is a
basis for a topology on A if the following are satisfied.

1. If x ∈ A, then there exists B ∈ B such that
x ∈ B.

2. If B1, B2 ∈ B and x ∈ B1 ∩B2, then there exists
B3 ∈ B such that x ∈ B3 and B3 ⊆ B1 ∩B2.

Given integers a and b with b > 0, there exist unique
integers q and r that satisfy a = bq + r, where

0 ≤ r < b.



Definition

Open set

Topology

Definition

Closed set

Topology

Definition

Relation on a set

Relations

Definition

Reflexive

Relations

Definition

Symmetric

Relations

Definition

Transitive

Relations

Definition

Equivalence relation

Relations

Definition

Equivalence class

Relations

Definition

Relation between sets

Relations

Definition

Inverse relation

Relations



Let A be a set, let B be a basis for a topology on A,
and let U ⊆ A. The set U is closed if U c is open.

Let A be a set, let B be a basis for a topology on A,
and let U ⊆ A. The set U is open if for each x ∈ U ,

there exists B ∈ B such that x ∈ B and B ⊆ U .

Let R be a relation on A. The relation R is reflexive
if a ∈ A implies that (a, a) ∈ R.

Let A be a set. The set R is a relation on A if
R ⊆ A2.

Let R be a relation on A. The relation R is transitive
if (a, b), (b, c) ∈ R implies that (a, c) ∈ R.

Let R be a relation on A. The relation R is
symmetric if (a, b) ∈ R implies that (b, a) ∈ R.

Let R be an equivalence relation on A, and let a ∈ A.
The equivalence class of a is the set

[a] = {b ∈ A : (a, b) ∈ R}.

x ∈ [a] ⇔ (a, x) ∈ R

Let R be a relation on A. The relation R is an
equivalence relation (on A) if it is reflexive,

symmetric, and transitive.

Let R be a relation from A to B. The inverse of R is
the relation from B to A given by

R−1 = {(b, a) : (a, b) ∈ R}.

(x, y) ∈ R−1 ⇔ (y, x) ∈ R

Let A and B be sets. The set R is a relation from A
to B if R ⊆ A×B.
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Let f be a function from A to B. The domain of f is
A. The codomain of f is B, and the image of f is the
set {b ∈ B : (a, b) ∈ f}. In other words, the image of

f is the set {f(a) : a ∈ A}.

Let R be a relation from A to B. The relation R is a
function if for each a ∈ A, R contains a unique
element of the form (a, b). In this case, we write

R(a) = b.

Let f be a function from A to B, and let V ⊆ B.
Then the inverse image of V (or preimage of V ) is

the set

f−1(V ) = {x ∈ A : f(x) ∈ V }.

x ∈ f−1(V ) ⇒ f(x) ∈ V

y ∈ V ⇒ y = f(x) for some
x ∈ f−1(V )

Let f be a function from A to B, and let U ⊆ A.
Then the image of U is the set

f(U) = {f(x) ∈ B : x ∈ U}.

y ∈ f(U) ⇒ y = f(x) for some
x ∈ U

x ∈ U ⇒ f(x) ∈ f(U)


