%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%% %12 %%%%%%%%%%%%%%%%%%%%%%%%% \chapter{Determine if these sets are open and/or closed.} Let $\eucal B$ be the set of ``open rectangles" in $\bbr$: \begin{align*} \eucal B = \{(a,b) \times (c,d) \subseteq \bbr^2: (a,b) \subseteq \bbr, (c,d) \subseteq \bbr\}. \end{align*} Here are two examples of elements in $\eucal B$: $B = (B_1,B_2) \times (B_3,B_4)$ and $C = (C_1,C_2) \times (C_3,C_4)$. \begin{center} \begin{tikzpicture} \draw (-2.5,0) -- (2.5,0) (0,-2.5) -- (0,2.5); \foreach \x/\y/\z/\w/\l/\c in {-1/1/-.3/2.1/B/red,-2.1/-1.9/1.1/-.4/C/green} { \draw[dashed,fill opacity=.4,,fill=\c] (\x,\y) rectangle (\z,\w); \draw (\x/2+\z/2,\y/2+\w/2) node {$\l$}; \draw (\x,-.1) -- (\x,.1) node[above,font=\footnotesize] {$\l_1$} (\z,-.1) -- (\z,.1) node[above,font=\footnotesize] {$\l_2$} (-.1,\y) -- (.1,\y) node[right,font=\footnotesize] {$\l_3$} (-.1,\w) -- (.1,\w) node[right,font=\footnotesize] {$\l_4$}; } \end{tikzpicture} \end{center} The set $\eucal B$ is a basis for a topology on $\bbr^2$. (You do not have to prove that $\eucal B$ is a basis.) Consider the following sets. \begin{enumerate} \item The interior of the unit circle: $U = \{(x,y) \in \bbr^2 : x^2 + y^2 < 1\}$. \item The integer lattice $\bbz^2$: $U = \{(x,y) \in \bbr^2 : x \in \bbz, y \in \bbz\}$. \end{enumerate} For each set $U$, complete the following. \begin{enumerate}[label={\alph*.}] \item Determine if $U$ is open or not open. Prove your claim. \item Determine if $U$ is closed or not closed. Prove your claim. \end{enumerate} In the end, you should have four short proofs. \section{First draft} Due Monday, April 4 at 6:00 PM. \begin{enumerate} \item The interior of the unit circle: $U = \{(x,y) \in \bbr^2 : x^2 + y^2 < 1\}$. \begin{enumerate} \item Claim: $U$ is (pick one: open/not open). \begin{proof} \end{proof} \item Claim: $U$ is (pick one: closed/not closed). \begin{proof} \end{proof} \end{enumerate} \item The integer lattice $\bbz^2$: $U = \{(x,y) \in \bbr^2 : x \in \bbz, y \in \bbz\}$. \begin{enumerate} \item Claim: $U$ is (pick one: open/not open). \begin{proof} \end{proof} \item Claim: $U$ is (pick one: closed/not closed). \begin{proof} \end{proof} \end{enumerate} \end{enumerate}