MATH 2001 FINAL EXAM

1. (a) Write out the first seven rows of Pascal's triangle (up to the row starting 1, 6).

- (b) Define what it means for a to *divide* b. Include any necessary conditions for a and b in your statement.
- (c) Consider the following definitions.

Definition. If a divides b, then we say that a is a *divisor* of b.

Definition. A number $p \in \mathbb{N}$ is *prime* if p > 1 and the only positive divisors of p are 1 and p.

Prove that if p is prime, then p divides $\binom{p}{k}$ for all 0 < k < p.

(d) According to the *binomial theorem*,

 $(x+y)^n =$

(e) Explain why $(x+y)^n = x^n + y^n$ is not a true statement in general. (A single counterexample would be sufficient.)

•

- (f) Define what it means for a to be *congruent* to b modulo n. As before, include any necessary conditions on a, b, and n in your statement.
- (g) Prove that if p is a prime number, then $(x + y)^p \equiv x^p + y^p \pmod{p}$.

- 2. (a) Define what it means for R to be an *equivalence relation* on A.
 - (b) Let $A = \{a, b, c, d, e, f\}$, and let R be the relation described by the following graph.

What is the minimal number of elements that need to be included for R to be transitive relation? List these elements in set notation.

- (c) What is \mathbb{R}^2 ? (Given your answer in set-builder notation, or give a description using vocabulary that is relevant to this course.)
- (d) Let $A = \mathbb{R}^2 \{(0,0)\}$ (all of the elements of \mathbb{R}^2 except for (0,0)). Let R be the relation on A that is defined as follows: $((x,y),(z,w)) \in R$ if and only if there exists a non-zero number $\lambda \in \mathbb{R}$ such that $(x,y) = (\lambda z, \lambda w)$. (In other words, $x = \lambda z$ and $y = \lambda w$.)

Prove that R is an equivalence relation on A.

- 3. (a) Define what it means for A to be a *finite set*.
 - (b) Let $\{A_i : i \in \mathbb{N}\}$ be a collection of finite sets (i.e. A_i is finite for each $i \in \mathbb{N}$). Let $B_n = \bigcup_{i=1}^n A_i$. Give a proof by induction that B_n is a finite set for each $n \in \mathbb{N}$.

- (c) Give an explicit example for when $\bigcup_{i=1}^{\infty} A_i$ is finite. Give a second example where $\bigcup_{i=1}^{\infty} A_i$ is infinite.
- (d) Prove that $\left(\bigcup_{i=1}^{\infty} A_i\right)^c = \bigcap_{i=1}^{\infty} A_i^c$. (Here, A^c denotes the complement of A.)

- 4. Join each set to its corresponding diagram. If no diagram exists, leave that statement unconnected.
 - (a) $(A \cap A) (C \cup B)$
 - (b) $((A \cap A) C) \cup B$
 - (c) $A \cap ((A C) \cup B)$
 - (d) $A \cap (A (C \cup B))$

5. Let A and B be sets, and let f be a function from A to B. Let $X \subseteq A$ and $Y \subseteq B$. Consider the following proof.

Proof. Suppose that $V, Y \subseteq B, x \in f^{-1}(V)$, but $x \notin f^{-1}(Y)$. Then $f(x) \in f(V)$. Then $f(x) \in f(Y)$. So $x \in f^{-1}(Y)$, which is impossible, completing the proof. \Box

- (i) What is the writer attempting to prove, and what is the style of proof being used?
- (ii) What is begin used to justify the second sentence? Write out the complete definition.
- (iii) There are some problems with the third sentence. What is the issue, and how can the proof be corrected so that the third sentence follows from the second?
- (iv) The fourth sentence also has an error. What is the issue here?
- (v) We would like to correct the fourth statement if possible. Suppose $x \notin f^{-1}(V)$ (as the author assumes). What can we say about f(x)?
- (vi) Using the suggestions from (ii)–(v), rewrite the proof so that it gives a valid argument for the statement in (i).