MATH 2001 QUIZ 10

- (1) (1 pt) Write your name in the top right corner of the page.
- (2) (6 pts) Recall that a basis of a topology on A is defined as follows.

Definition. Let A be a set, and let \mathcal{B} be a set of subsets of A. The set \mathcal{B} is a basis for a topology on A if the following properties are satisfied.

- i For each $x \in A$, there exists a $B \in \mathcal{B}$ such that $x \in B$.
- ii If $B_1, B_2 \in \mathcal{B}$, then for each $x \in B_1 \cap B_2$, there exists a $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$.

Complete the following exercises to determine if $\mathcal{B} = \{\{n, n+1, n+2\} : n \in \mathbb{Z}\}$ is a basis for a topology on $A = \mathbb{Z}$.

(a) Let $\mathcal{B} = \{\{n, n+1, n+2\} : n \in \mathbb{Z}\}$, and suppose $x \in \mathbb{Z}$.

Does there exist a $B \in \mathcal{B}$ such that $x \in B$? If yes, give a B that contains x and draw B in the picture below. If not, give a counterexample, or briefly explain why no such B exists.

Yes. Not drawn, but $\{x-2, x-1, x\}$, $\{x-1, x, x+1\}$, and $\{x, x+1, x+2\}$ are all valid basis elements.

(b) Suppose $B_1, B_2 \in \mathcal{B}$ and that $B_1 \cap B_2 \neq \emptyset$. For each $x \in B_1 \cap B_2$, does there exist a $B_3 \in \mathcal{B}$ such that $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$? **If yes**, give a brief explanation. **If not**, draw a B_1, B_2 , and B_3 in the picture below that do not satisfy the condition.

No. For example if $B_1 = \{x - 1, x, x + 1\}$ and $B_2 = \{x, x + 1, x + 2\}$, then there does not exist a B_3 for which $x \in B_3$ and $B_3 \subseteq B_1 \cap B_2$. More generally, any B_1 and B_2 where $|B_1 \cap B_2| < 3$ yields a counterexample.

(3) (3 pts) Let A be a set, let \mathcal{B} be a basis for a topology on A, and let U be a subset of A. State what it means for U to be an *open set*.

The set U is open if for each $x \in U$, there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$.

Date: May 15, 2016.