MATH 2001 TOPOLOGY Upcoming deadlines: • Due Monday, Mar 14: final draft of proof 8, first draft of proof 9. • Due Wednesday, Mar 16: first draft of proof 10. • Due Friday, Mar 18: final draft of proof 9. **Definition.** Let A be a set, and let \mathcal{T} be a set of subsets of A. The set \mathcal{T} is a topology on A if \mathcal{T} satisfies the following properties. (1) The sets \varnothing and A are elements of \Im . (2) The set \mathcal{T} is closed under arbitrary union: if $S \subseteq \mathcal{T}$, then $$\bigcup_{U \in S} U \in \mathfrak{I}.$$ That is, the union of any number of elements in \mathcal{T} (finite or infinite) is an element of \mathcal{T} . (3) The set \mathcal{T} is closed under finite intersection: if $S \subseteq \mathcal{T}$ and $|S| < \infty$, then $$\bigcap_{U\in S}U\in \mathfrak{T}.$$ That is, the intersection of finitely many elements in \mathcal{T} is an element of \mathcal{T} . **Exercise 1.** Let $A = \{a, b, c, d\}$. For each set \mathcal{T} , determine if \mathcal{T} is a topology on A. If \mathcal{T} is not a topology, find the smallest set containing \mathcal{T} that is a topology. 1 a. $$\mathfrak{T} = \{\emptyset, A\}$$ b. $$\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, A\}$$ c. $$\mathfrak{T} = \{\emptyset, \{a\}, \{b\}, A\}$$ d. $$\Im = \{\varnothing, \{a, b\}, \{c, d\}, A\}$$ e. $$\mathfrak{T} = \{\emptyset, \{a\}, \{a, b, c\}, \{c, d\}, A\}$$ **Exercise 2.** Let A be a set. Prove that $\mathscr{P}(A)$ is a topology on A. *Remark.* The definition of topology is often a difficult definition to satisfy because it is a lot of work to check that every union and every finite intersection is contained in the topology. **Definition.** Let A be a set, and let \mathcal{B} be a set of subsets of A. The set \mathcal{B} is a basis for a topology on A if it satisfies the following properties. - (1) For each $x \in A$, there exists $B \in \mathcal{B}$ such that $x \in B$. - (2) If $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3$, and $B_3 \subseteq B_1 \cap B_2$. **Exercise 3.** Let $A = \{a, b, c, d\}$. For each set \mathcal{B} , determine if \mathcal{B} is a basis for a topology on A. If \mathcal{B} is not a topology, explain why it violates the definition. a. $$\mathcal{B} = \{A\}$$ b. $$\mathcal{B} = \{\{a\}, \{a,b\}, \{a,b,c\}, A\}$$ c. $$\mathcal{B} = \{\{a\}, \{b\}, \{c, d\}\}\$$ d. $$\mathcal{B} = \{\{b, c\}, \{a, b, c\}, \{b, c, d\}\}$$ e. $$\mathcal{B} = \{\{a\}, \{a, b, c\}, \{c, d\}\}\$$ **Exercise 4.** Prove that $\mathcal{B} = \{(a,b) \subseteq \mathbb{R} : a,b \in \mathbb{R}\}$ is a basis for a topology on \mathbb{R} . **Exercise 5.** Prove that $\mathcal{B} = \{U \subseteq \mathbb{R} : |\overline{U}| < \infty\}$ is a basis for a topology on \mathbb{R} . **Definition.** Let A be a set, and let \mathcal{B} be a basis for a topology on A. The topology \mathcal{T} generated by \mathcal{B} is the set of all $U \subseteq A$ that satisfy: if $x \in U$, then there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$. That is, $\mathcal{T} = \{U \subseteq A : \text{ for each } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \text{ and } B \subseteq U\}.$ **Exercise 6.** Prove that if A is a set, \mathcal{B} is a basis for a topology on A, and \mathcal{T} is the topology generated by \mathcal{B} , then \mathcal{T} is a topology on A. **Exercise 7.** Prove that if A is a set and T is a topology on A, then there exists a basis for a topology \mathcal{B} that generates T.