MATH 2001 TOPOLOGY

Upcoming deadlines:

• Due Monday, Mar 14: final draft of proof 8, first draft of proof 9.

• Due Wednesday, Mar 16: first draft of proof 10.

• Due Friday, Mar 18: final draft of proof 9.

Definition. Let A be a set, and let \mathcal{T} be a set of subsets of A. The set \mathcal{T} is a topology on A if \mathcal{T} satisfies the following properties.

(1) The sets \varnothing and A are elements of \Im .

(2) The set \mathcal{T} is closed under arbitrary union: if $S \subseteq \mathcal{T}$, then

$$\bigcup_{U \in S} U \in \mathfrak{I}.$$

That is, the union of any number of elements in \mathcal{T} (finite or infinite) is an element of \mathcal{T} .

(3) The set \mathcal{T} is closed under finite intersection: if $S \subseteq \mathcal{T}$ and $|S| < \infty$, then

$$\bigcap_{U\in S}U\in \mathfrak{T}.$$

That is, the intersection of finitely many elements in \mathcal{T} is an element of \mathcal{T} .

Exercise 1. Let $A = \{a, b, c, d\}$. For each set \mathcal{T} , determine if \mathcal{T} is a topology on A. If \mathcal{T} is not a topology, find the smallest set containing \mathcal{T} that is a topology.

1

a.
$$\mathfrak{T} = \{\emptyset, A\}$$

b.
$$\mathcal{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, b, c\}, A\}$$

c.
$$\mathfrak{T} = \{\emptyset, \{a\}, \{b\}, A\}$$

d.
$$\Im = \{\varnothing, \{a, b\}, \{c, d\}, A\}$$

e.
$$\mathfrak{T} = \{\emptyset, \{a\}, \{a, b, c\}, \{c, d\}, A\}$$

Exercise 2. Let A be a set. Prove that $\mathscr{P}(A)$ is a topology on A.

Remark. The definition of topology is often a difficult definition to satisfy because it is a lot of work to check that every union and every finite intersection is contained in the topology.

Definition. Let A be a set, and let \mathcal{B} be a set of subsets of A. The set \mathcal{B} is a basis for a topology on A if it satisfies the following properties.

- (1) For each $x \in A$, there exists $B \in \mathcal{B}$ such that $x \in B$.
- (2) If $B_1, B_2 \in \mathcal{B}$, and $x \in B_1 \cap B_2$, then there exists $B_3 \in \mathcal{B}$ such that $x \in B_3$, and $B_3 \subseteq B_1 \cap B_2$.

Exercise 3. Let $A = \{a, b, c, d\}$. For each set \mathcal{B} , determine if \mathcal{B} is a basis for a topology on A. If \mathcal{B} is not a topology, explain why it violates the definition.

a.
$$\mathcal{B} = \{A\}$$

b.
$$\mathcal{B} = \{\{a\}, \{a,b\}, \{a,b,c\}, A\}$$

c.
$$\mathcal{B} = \{\{a\}, \{b\}, \{c, d\}\}\$$

d.
$$\mathcal{B} = \{\{b, c\}, \{a, b, c\}, \{b, c, d\}\}$$

e.
$$\mathcal{B} = \{\{a\}, \{a, b, c\}, \{c, d\}\}\$$

Exercise 4. Prove that $\mathcal{B} = \{(a,b) \subseteq \mathbb{R} : a,b \in \mathbb{R}\}$ is a basis for a topology on \mathbb{R} .

Exercise 5. Prove that $\mathcal{B} = \{U \subseteq \mathbb{R} : |\overline{U}| < \infty\}$ is a basis for a topology on \mathbb{R} .

Definition. Let A be a set, and let \mathcal{B} be a basis for a topology on A. The topology \mathcal{T} generated by \mathcal{B} is the set of all $U \subseteq A$ that satisfy: if $x \in U$, then there exists $B \in \mathcal{B}$ such that $x \in B$ and $B \subseteq U$. That is, $\mathcal{T} = \{U \subseteq A : \text{ for each } x \in U, \text{ there exists } B \in \mathcal{B} \text{ such that } x \in B \text{ and } B \subseteq U\}.$

Exercise 6. Prove that if A is a set, \mathcal{B} is a basis for a topology on A, and \mathcal{T} is the topology generated by \mathcal{B} , then \mathcal{T} is a topology on A.

Exercise 7. Prove that if A is a set and T is a topology on A, then there exists a basis for a topology \mathcal{B} that generates T.