

Exercise 1. What is a *Cartesian product?* State the exact definition.

Exercise 2. Let $A = \{0, 1\}$ and $B = \{\emptyset\}$. Write out the sets A^2 and $B \times A$ explicitly.

Exercise 3. Let $A = \{a, b, \{a, b\}, (a, b), \mathbb{Z}\}$. True or false?

	\mathbf{T}	A \mathbf{T} \mathbf{F} : S	$\varnothing \subseteq A$
--	--------------	-------------------------------------	---------------------------

$$\mathbf{T} \qquad \mathbf{F} \quad : \quad \varnothing \in \mathscr{P}(A) \qquad \qquad \mathbf{T} \qquad \mathbf{F} \quad : \quad \varnothing \subseteq \mathscr{P}(A)$$

$$\mathbf{T} \qquad \mathbf{F} \quad : \quad \{a,b\} \in A \qquad \qquad \mathbf{T} \qquad \mathbf{F} \quad : \quad \{a,b\} \subseteq A$$

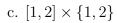
$$\mathbf{T} \qquad \mathbf{F} \quad : \quad \{a,b\} \in \mathscr{P}(A) \qquad \qquad \mathbf{T} \qquad \mathbf{F} \quad : \quad \{a,b\} \subseteq \mathscr{P}(A)$$

$$\mathbf{T} \qquad \mathbf{F} \quad : \quad (a,b) \in A^2 \qquad \qquad \mathbf{T} \qquad \mathbf{F} \quad : \quad (a,b) \subseteq A^2$$

$${f T} \qquad {f F} \quad : \quad \{(a,a)\} \in A^2 \qquad \qquad {f T} \qquad {f F} \quad : \quad \{(a,a)\} \subseteq A^2$$

$$\mathbf{T} \qquad \mathbf{F} \quad : \quad \{a,b\} \in A^2 \qquad \qquad \mathbf{T} \qquad \mathbf{F} \quad : \quad \{a,b\} \subseteq A^2$$

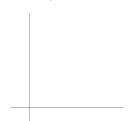
$$\mathbf{T} \qquad \mathbf{F} \quad : \quad 1 \in A \qquad \qquad \mathbf{T} \qquad \mathbf{F} \quad : \quad 1 \subseteq A$$


Exercise 4. Let $A = \{0, 1\}$, $B = \{\emptyset\}$, and $C = A \times B$. Consider the following sets:

- $\bullet \ A \times A \times B$
- $\bullet \ A \times C$
- \bullet $A^2 \times B$
- $A \times (A \times B)$
- $(A \times A) \times B$

What are the distinctions between these sets? Are all/any of them the same? If not, how do the sets differ?

Exercise 5. Sketch each of the following sets in the x, y-plane.


e.
$$\mathbb{R} \times \{1, 2\}$$


b.
$$\{1,2\}^2$$

d.
$$\mathbb{R} \times \mathbb{N}$$

f.
$$(0,1)\times\mathbb{R}$$

Exercise 6. Suppose A and B are finite sets. What is the cardinality of $A \times B$? In a few sentences, justify your claim.

 $\bf Homework.$ Due Friday, January 29 at 2pm.

- Read Section 1.2 from the text.
- Complete the following exercises (add these to your Overleaf file with the other book problems).
 - Section 1.2: 2a, 2b, 6