MATH 2001 PROOFS

Homework. Due Friday, February 12 at 6pm.	
• Complete Proof 2 (originally due today, but pushed back to Friday).	
• Revise Proof 1.	
• Add Exercise 1 on this worksheet in your Book Problems Overleaf file.	
\bullet Read sections 8.1 and 8.2 and definition 4.4. (Skip examples 8.3 and 8.7).	
Definition (Subset).	
Definition (Union).	
Theorem. If A and B are sets, then $A \subseteq A \cup B$.	
Proof.	
Definition (Power set).	

Theorem. If A and B are sets, then $\mathscr{P}(A) \cup \mathscr{P}(B) \subseteq \mathscr{P}(A \cup B)$.

Definition (Divides). Suppose $a, b \in \mathbb{Z}$, then a divides b if ac = b for some $c \in \mathbb{Z}$.

Notation. We write $a \mid b$ (a \mid b) to denote that a divides b or that a is a divisor of b.

Exercise 1. Demonstrate why the statement is true or explain why the statement is false.

 \mathbf{T} \mathbf{F} : $4 \mid 20$

 $\mathbf{T} \qquad \mathbf{F} : 0 \mid 0$

T F : 3 | 11

 $\mathbf{T} \qquad \mathbf{F} : \frac{1}{2} \mid 10$

 $\mathbf{T} \qquad \mathbf{F} \quad : \quad 0 \mid 33$

 ${f T} \qquad {f F} \quad : \quad {1\over 3} \mid {2\over 3}$

Exercise 2. Prove that $\{x \in \mathbb{Z} : 55 \mid x\} \subseteq \{x \in \mathbb{Z} : 11 \mid x\}.$