MATH 2001 DEFINITIONS: REVIEW

Definition 1 (Set equality). If A and B are sets, then A = B if $x \in A \Rightarrow x \in B$ and $x \in B \Rightarrow x \in A$.

Definition 2 (Subset). If A and B are sets, then $A \subseteq B$ if $x \in A \Rightarrow x \in B$.

Definition 3 (Power set). If A is a set, then $\mathscr{P}(A) = \{x : x \subseteq A\}$.

Definition 4 (Union). If A and B are sets, then $A \cup B = \{x : x \in A \text{ or } x \in B\}$.

Definition 5 (Finite and infinite unions). If $\{A_i\}$ is a collection of sets indexed by I, then

$$\bigcup_{i \in I} A_i = \{x : x \in A_i \text{ for some } i \in I\}.$$

Definition 6 (Intersection). If A and B are sets, then $A \cap B = \{x : x \in A \text{ and } x \in B\}$.

Definition 7 (Finite and infinite intersection). If $\{A_i\}$ is a collection of sets indexed by I, then

$$\bigcap_{i \in I} A_i = \{x : x \in A_i \text{ for every } i \in I\}.$$

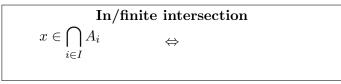
Definition 8 (Set difference). If A and B are sets, then $A - B = \{x : x \in A \text{ and } x \notin B\}$.

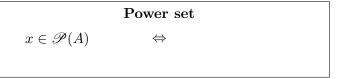
Definition 9 (Complement). If A is a set, then $\overline{A} = \{x : x \notin A\}$.

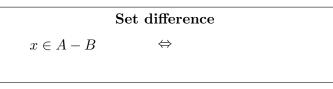
Exercise 1. Fill out the right side of each block.

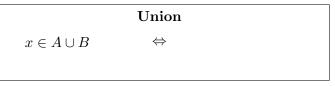
	Set equality					
A = B	\Leftrightarrow					

Set equality		Intersection
\Leftrightarrow	$x \in A \cap B$	\Leftrightarrow









$$x \in \bigcup_{i \in I} A_i \qquad \Leftrightarrow \qquad \qquad \Leftrightarrow$$

All of the proof that we have been writing recently have been of the form, "prove that $A \subseteq B$." In order to prove that $A \subseteq B$, we show that A and B satisfy the definition of subset. Namely, we show that if $x \in A$, then $x \in B$. In particular, the body of the proof should start with the statement, "suppose $x \in A$ " (or "if $x \in A$ "). Then after a series of logical deductions, the proof ends once we conclude that $x \in B$.

Exercise 2. Arrange the following statements to give an outline for a proof that $(A \cap B) - C \subseteq (A - C) \cap (B - C)$. Justify each statement by citing the appropriate definition.

Exercise 3. Since unions are 'or' statements, proofs involving unions often break into multiple cases. Arrange the statements to prove that $(A-C) \cup (B-C) \subseteq (A \cup B) - C$. Justify each statement by citing the appropriate definition.

	<i>></i>	(by definition of)	
Case 1:	<i>⇒</i>	(by definition of)	a. $x \in A - C$ b. $x \in B - C$
	⇒	(by definition of)	c. $x \in B - C$
	⇒	(by definition of)	d. $x \in (A \cup B) - C$
	⇒	(by definition of)	e. $x \in B$ and $x \notin C$
Case 2:	<i>></i>	(by definition of)	f. $x \in A$ and $x \notin C$ g. $x \in A$ or $x \in B$, and $x \notin C$
	⇒	(by definition of)	h. $x \in A - C$ or $x \in B - C$
	⇒	(by definition of)	i. $x \in (A-C) \cup (B-C)$
	⇒	(by definition of)	

Exercise 4. In a similar fashion, sketch proofs for the following statements. In some cases, the justification for a step might not be a definition, but information that was given in the statement of the problem.

- a. Prove that if $X \subseteq A \cap B$, then $X \subseteq A$ and $X \subseteq B$.
- b. Prove that $\mathscr{P}(A \cap B) \subseteq \mathscr{P}(A) \cap \mathscr{P}(B)$.
- c. Prove that if $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

Upcoming deadlines:

- Due Friday, Feb 19: first draft of Proof 4.
- Due Monday, Feb 22: final draft of Proof 1 and second draft of proof 2.
- Due Wednesday, Feb 24: second draft of proof 3.