MATH 2001 DEFINITIONS: REVIEW II

Definition 1 (Cartesian product). If A and B are a sets, then $A \times B = \{(a, b) : a \in A \text{ and } b \in B\}$.

Exercise 1. Arrange the following statements to give an outline for a proof that $(A \cap B) \times C \subseteq (A \times C) \cap (B \times C)$. Justify each statement by citing the appropriate definition.

Proof. (Start by a short introduction defining the variables and describing what will be proved.)

Exercise 2. In a similar fashion, sketch proof for the statement $(A \times C) \cap (B \times C) \subseteq (A \cap B) \times C$. Include a brief introduction for each proof.

In Proof 2 in the Proof Portfolio, I stated the following theorem.

Theorem. If A and B are sets, then A = B if and only if $A \subseteq B$ and $B \subseteq A$.

This theorem (showing that two sets are subsets of each other) is the most common technique for proving that two sets are equal.

Exercise 3. Show that $A \times (B \cup C) = (A \times B) \cup (A \times C)$ by proving that

a.
$$A \times (B \cup C) \subseteq (A \times B) \cup (A \times C)$$
, and

b.
$$(A \times B) \cup (A \times C) \subseteq A \times (B \cup C)$$
.

Upcoming deadlines:

- Due Friday, Feb 19: first draft of Proof 4.
- Due Monday, Feb 22: final draft of Proof 1 and second draft of proof 2.
- Due Wednesday, Feb 24: second draft of proof 3, and first draft of proof 5.
- Due Friday, Feb 26: second draft of proof 4.