Graph Adjacent

DEFINITION DEFINITION

Endpoint of an edge Incident

DEFINITION DEFINITION

Neighbors of a vertex Degree of a vertex

THEOREM DEFINITION

Graph relation Order of a graph

DEFINITION DEFINITION

Size of a graph Maximum and minimum degree

Let G = (V, E) be a graph. If $u, v \in V$, then u is adjacent to v if $\{u, v\} \in E$. We also use the notation $u \sim v$ to denote that u is adjacent to v.

 $u \sim v \qquad \Leftrightarrow \qquad \{u, v\} \in E$

A graph is a pair G = (V, E), where V is a nonempty finite set and E is a set of two-element subsets of V. The elements in V are vertices and the elements of E are edges.

Let G = (V, E) be a graph. An vertex $v \in V$ is incident with the edge $e \in E$ if $v \in e$.

Let G = (V, E) is a graph. If $\{u, v\} \in E$, then the endpoints of $\{u, v\}$ are the vertices u and v.

Let G = (V, E) be a graph. The *degree* of a vertex $v \in V$ is the number of edges in G incident with v, and is denoted by

$$d(v) = \#\{e \in E : v \in e\}.$$

Let G = (V, E). For any $v \in V$, the *neighbors* of v is the set of vertices adjacent to v. The set of neighbors of v is denoted by

$$N(v) = \{ u \in V : u \sim v \}.$$

The order of a graph G is |V(G)|, the number vertices in G.

For any graph
$$G=(V,E),$$
 we have
$$\sum_{v\in V}d(v)=2|E|.$$

Let G = (V, E) be a graph. The maximum degree and minimum degree of the vertices in G are

$$\Delta(G) = \max\{d(v) : v \in V\}$$

$$\delta(G) = \min\{d(v) : v \in V\}.$$

The *size* of a graph G is |E(G)|, the number edges in G.

Regular / k-regular graph

Complete graph

DEFINITION

DEFINITION

 ${\bf Subgraph}$

Edge deletion

DEFINITION

DEFINITION

Spanning subgraph

Vertex deletion

DEFINITION

DEFINITION

Induced subgraph

Clique / clique number

DEFINITION

DEFINITION

Independent set / independence number

Walk / (u, v)-walk

A graph is *complete* if each vertex is adjacent to each other vertex. The complete graph of order n is denoted by K_n .

A graph G = (V, E) is regular if all of the vertices in the graph has the same degree. Moreover, the graph is k-regular if d(v) = k for all $v \in V$.

$$G$$
 is k -regular \Leftrightarrow $d(v) = k$ for all $v \in V(G)$

Let G be a graph. An edge deletion is the process of removing an edge e from G. This process results in a new graph, denoted by G - e, where

$$V(G - e) = V(G)$$
 and $E(G - e) = E(G) - \{e\}.$

Let G and H be graphs. The graph H is a subgraph of G if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$.

Let G be a graph. A vertex deletion is the process of removing a vertex v from G to create a new graph, denoted by G - v, where

$$V(G - v) = V(G) - \{v\}$$

$$E(G - v) = \{e \in E(G) : v \notin e\}.$$

Let G and H be graphs. The graph H is a spanning subgraph of G if H is a subgraph of G and V(H) = V(G).

Let G be a graph. A subset of vertices $W \subseteq V(G)$ is called a *clique* if G[W] is a complete graph. The *clique number* of G is the size of the largest clique in G.

Let G be a graph and let W be a subset of vertices is G (that is, $W \subseteq V(G)$). The *induced subgraph* of G onto W is the new graph, denoted by G[W], where

$$V(G[W]) = W, \\ E(G[W]) = \{\{u, v\} \in E(G) : u \in W, v \in W\}.$$

Let G be a graph. A walk in G is a sequence of vertices $W = (v_0, v_1, v_2, \ldots, v_n)$ where each vertex adjacent to the next, that is, $v_0 \sim v_1 \sim v_2 \sim \cdots \sim v_n$. A (u, v)-walk is a walk whose first vertex is u and whose last vertex is v.

Let G be a graph. A subset of vertices $W \subseteq V(G)$ is independent if no two vertices in W are adjacent. The $independence\ number$ of G is the size of the largest independent set in G.

Tree

	Walk length		Concatenation
DEFINITION		Definition	
	Path / (u, v) -path		Connected vertices
DEFINITION		Definition	
	Connected graph		Component
DEFINITION		DEFINITION	
	Cut vertex		Cut edge
DEFINITION		DEFINITION	

Cycle

Let W_1 be a (u, v) -walk and W_2 be a (v, w) -walk. The concatenation of W_1 and W_2 (denoted by $W_1 + W_2$) is the (u, w) -walk defined by the walk W_1 , followed by the walk W_2 .	The $length$ of a walk is the number of edges traversed by the walk.	
Let G be a graph. The vertices $u,v\in V(G)$ are $connected \text{ if } G \text{ contains a } (u,v)\text{-path.}$ u is connected to $v \Leftrightarrow G \text{ contains a } (u,v)\text{-path}$	A $path$ in a graph is a walk in which no vertex is repeated. A (u, v) -path is a path from u to v .	
A component H of a graph G is a maximal connected subgraph of G , meaning that H is not a proper subgraph of any connected subgraph of G .	A graph G is $connected$ if, for every pair of vertices $u,v\in V(G),u$ and v are connected. $G \text{ is connected } \Leftrightarrow \text{ for every } u,v\in V(G),\\ u \text{ is connected to } v$	
Let G be a graph. An edge $e \in E(G)$ is a $cut\ edge$ if $G-e$ has more components than G . $v \text{ is a cut edge} \Leftrightarrow G-e \text{ has more components than } G$	Let G be a graph. A vertex $v \in V(G)$ is a $cut\ vertex$ if $G-v$ has more components than G . $v \text{ is a cut vertex} \Leftrightarrow G-v \text{ has more components than } G$	
A connected graph G is a $tree$ if it does not contain any cycles.	A $cycle$ is a walk of length at least three whose first	

 ${\cal G}$ does not contain

any cycles

 \Leftrightarrow

G is a tree

A cycle is a walk of length at least three whose first

vertex and last vertex are the same.

DEFINITION DEFINITION

Forest Spanning tree

DEFINITION DEFINITION

A graph G is a forest if every component of G is a tree.

Let G be a graph. A *spanning tree* of G is a spanning subgraph of G that is a tree.

G is a forest

 \Leftrightarrow each component of G is a tree

Let G be a graph. An Eulerian trail is a walk in G that traverses every edge exactly once. A graph G is Eulerian if it contains an Eulerian trail.

Let G be a graph. A Hamiltonian cycle is a cycle of G that contains all of the vertices of G. A graph G is Hamiltonian if it contains a Hamiltonian cycle.