3.1 — Image and kernel of a linear transformation University of Massachusetts Amherst Math 235 — Spring 2014

Recall that if $\vec{v}_1, \dots, \vec{v}_m$ are vectors and a_1, \dots, a_m are scalars, then the linear combination of these vectors with these scalars as coefficients is

$$a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_m\vec{v}_m$$
.

Definition 1. Let $\vec{v}_1, \ldots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . The set of all linear combinations of these vectors is called their span, for which we write $span(\vec{v}_1, \ldots, \vec{v}_m)$.

Example 2.

(i) Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
. What is span (\vec{v}_1) ? Express the vector $\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$ as a linear combination of \vec{v}_1 .

(ii) Let
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$. What is $\operatorname{span}(\vec{v}_1, \vec{v}_2)$? Express $\begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$ as a linear combination of \vec{v}_1, \vec{v}_2 .

(iii) What is the span of
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\0 \end{bmatrix}$. Write $\begin{bmatrix} 3\\2\\0 \end{bmatrix}$ as a linear combination of these vectors.

Definition 3. The *image* of a function f is the set of all outputs of f. That is, $im(f) = \{f(x) : x \in domain(f)\}.$

Theorem 4. Let T be a linear transformation from \mathbb{R}^m to \mathbb{R}^n with associated matrix A. The image of T is the span of the columns of A.

Proof. We want to show that $\operatorname{im}(T) = \operatorname{span}(\operatorname{columns} \operatorname{of} A)$. In other words, we want to prove that $\vec{b} \in \operatorname{im}(T)$ if and only if $\vec{b} \in \operatorname{span}(\operatorname{columns} \operatorname{of} A)$.

Example 5. Describe the image of the linear transformation represented by the matrix A, when

$$(a) \quad A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$(b) \quad A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(a)
$$A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Example 6. Is \vec{b} in the image of the linear transformation given by the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$? If so, express \vec{b} as a linear combination of the columns of A.

Theorem 7. The image of a linear transformation T (from \mathbb{R}^m to \mathbb{R}^n) has the following properties:

- (a) The zero vector $\vec{0}$ in \mathbb{R}^n is in the image of T.
- (b) The image of T is closed under addition: If \vec{b}_1 and \vec{b}_2 are in the image of T, then so is $\vec{v}_1 + \vec{v}_2$.
- (c) The image of T is closed under scalar multiplication: If \vec{v} is in the image of T, then so is $k\vec{v}$ for any scalar k.

Proof.

Example 8. Let A be an $n \times n$ matrix. Show that $\operatorname{im}(A^2)$ is a subset of $\operatorname{im}(A)$. That is, show that if $\vec{b} \in \operatorname{im}(A^2)$, then $\vec{b} \in \operatorname{im}(A)$.

Definition 9. The *kernel* (or null space) of a linear transformation T from \mathbb{R}^m to \mathbb{R}^n is the set of all solutions to the equation $T(\vec{x}) = \vec{0}$. That is,

$$\ker(T) = \operatorname{Nul}(T) = \{ x \in \mathbb{R}^m \colon T(\vec{x}) = \vec{0} \}$$

Example 10. Find the kernel of the linear transformation $T(\vec{x}) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \vec{x}$.

Example 11. Describe the image and kernel of $\operatorname{proj}_{\vec{v}}(\vec{x})$ when $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Theorem 12. Let T be a linear transformation from \mathbb{R}^m to \mathbb{R}^n .

- (a) The zero vector $\vec{0}$ in \mathbb{R}^m is in the kernel of T.
- (b) The kernel of T is closed under addition.
- (c) The kernel of T is closed under scalar multiplication.

Theorem 13.

- (a) If A is an $n \times m$ matrix, then $\ker(A) = \{\vec{0}\}\$ if and only if $\operatorname{rank}(A) = m$.
- (b) If A is an $n \times m$ matrix and $\ker(A) = \{\vec{0}\}$, then $m \le n$. If m > n, then then $\ker(A)$ contains non-zero vectors.
- (c) If A is a square matrix, then $ker(A) = {\vec{0}}$ if and only if A is invertible.

Proof.

Theorem 14. Let A be an $n \times n$ matrix. The following statements are equivalent. (If one statement is true, then all the statements are true; if one statement is false, then all are false.)

- (a) A is invertible.
- (b) The linear system $A\vec{x} = \vec{b}$ has a unique solution \vec{x} for every \vec{b} in \mathbb{R}^n .
- (c) $\operatorname{rref}(A) = I_n$.
- (d) $\operatorname{rank}(A) = n$.
- (e) $\operatorname{im}(A) = \mathbb{R}^n$.
- (f) $\ker(A) = \{\vec{0}\}.$

ADDITIONAL EXERCISES

- (1) Prove Theorem 11.
- (2) Give spanning sets for the image and the kernel of the matrix A when

(3) Suppose that A is a square matrix and $\ker(A^2) = \ker(A^3)$. Is it true that $\ker(A^3) = \ker(A^4)$?