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Definition 1. An n×n matrix A is diagonalizable if A is similar to some diagonal matrix D. That
is, there exists an n× n invertible matrix S such that S−1AS is diagonal.

Theorem 2. Let T be a linear transformation where T (~x) = A~x for some n×n matrix A. Suppose
D = {~v1, ~v2, . . . , ~vn} is an eigenbasis for A, with A~vi = λi~vi. Then the D-matrix of T is

D = S−1AS =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 , where S =

 | |
~v1 · · · ~vn
| |

 .
Theorem 3.

(a) A is diagonalizable if and only if there exists an eigenbasis for A.
(b) If A has n distinct eigenvalues, then A is diagonalizable.

Theorem 4. To determine if an n× n matrix is A is diagonalizable:

(a) Find the eigenvalues of A.
(b) For each eigenvalue λ, determine the dimension of the eigenspace Eλ.
(c) The matrix A is diagonalizable if and only if the dimensions of the eigenspaces add up to n.

Example 5. Diagonalize the matrix A =

1 0 0
0 0 0
0 0 0

 if possible.

answer: A is already diagonal, so we don’t have to to anything, but let’s go through the steps
anyway.

First we need to determine the eigenvalues. This is a diagonal matrix, so its eigenvalues are the
numbers on the diagonal: 1 (with algebraic multiplicity 1) and 0 (with algebraic multiplicity 2).

Now we need to compute the eigenspaces:

E1 = ker(A− I) = ker

0 0 0
0 −1 0
0 0 −1

 = ker

0 1 0
0 0 1
0 0 0

 = span


1

0
0

 ,

E0 = ker(A) = ker

1 0 0
0 0 0
0 0 0

 = span


0

1
0

 ,
0

0
1

 .

We see that dimE1 = 1 and dimE0 = 2. The dimensions add up to 3, so an eigenbasis exists,

and the matrix is diagonalizable. Specifically, the eigenbasis is


1

0
0

 ,
0

1
0

 ,
0

0
1

 (just take the

vectors from the eigenspaces), and the diagonal matrix is D =

1 0 0
0 0 0
0 0 0

.

Example 6. For which values is the matrix A =

1 a b
0 0 c
0 0 1

 diagonalizable?

answer: A is upper triangular, so its eigenvalues are on the diagonal: 0 (with algebraic
multiplicity 1) and 1 (with algebraic multiplicity 2). Recall from Theorem 5 of the 7.3 notes that

1 ≤ geometric multiplicity of λ ≤ algebraic multiplicity of λ.
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The geometric multiplicity of λ is the dimension of the eigenspace Eλ. So for the eigenvalue 0, we
know that its geometric multiplicity must be 1. We can verify this by computing the eigenspace:

E0 = ker(A) = ker

1 a b
0 0 c
0 0 1

 = ker

1 a 0
0 0 1
0 0 0

 = span


−a1

0

 .

For the matrix to be diagonalizable, we need the dimensions of the eigenspaces to add to 3, so
we need the dimension of the eigenspace E1 to be 2. Let’s compute this eigenspace.

E1 = ker(A− I) = ker

0 a b
0 −1 c
0 0 0

 = ker

0 1 −c
0 a b
0 0 0

 = ker

0 1 −c
0 0 b+ ac
0 0 0

 .
The dimension of the kernel is 2 if and only if the matrix has one pivot, and the matrix has exactly
one pivot only if b+ ac = 0. Thus A is diagonalizable if and only if b+ ac = 0.

Example 7. Let A =

[
1
2

3
4

1
2

1
4

]
. Compute lim

t→∞
At.

answer: This question is nearly impossible to do by direct computation. The key is to
diagonalize A, that is, write A = SDS−1 for some invertible matrix S and diagonal matrix D.

To diagonalize A, we first compute its eigenvalues. The characteristic polynomial of a 2 × 2
matrix is

λ2 − tr(A)λ+ det(A) = λ2 − 3

4
λ− 1

4
.

To find the eigenvalues, we set this polynomial equal to 0:

λ2 − 3

4
λ− 1

4
= 0

4λ2 − 3λ− 1 = 0

(4λ+ 1)(λ− 1) = 0,

so the eigenvalues are −1/4 and 1. Thus

D =

[
1 0
0 −1

4

]
.

To get S, we need to compute the eigenspaces:

E1 = ker(A− I) = ker

[
−1

2
3
4

1
2 −3

4

]
= ker

[
1 −3

2
0 0

]
= span

{[
3/2
1

]}

E−1/4 = ker(A+
1

4
I) = ker

[
3
4

3
4

1
2

1
2

]
= ker

[
1 1
0 0

]
= span

{[
−1
1

]}
.

So let’s take S =

[
3/2 −1
1 1

]
. Now

A = SDS−1 =
2

5

[
3/2 −1
1 1

] [
1 0
0 −1

4

] [
1 1
−1 3/2

]
.

There are two facts we need to finish this problem. First, (SDS−1)t = SDtS−1 (this property

appeared in one of the previous homework assignments). Secondly, Dt =

[
1t 0

0
(
−1

4

)t] (this is a

property of diagonal matrices from Chapter 2). Using these properties, we get

lim
t→∞

At = lim
t→∞

SDtS−1
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= lim
t→∞

2

5

[
3/2 −1
1 1

] [
1 0

0
(
−1

4

)t] [ 1 1
−1 3/2

]
=

2

5

[
3/2 −1
1 1

] [
1 0
0 0

] [
1 1
−1 3/2

]
=

[
3/5 3/5
2/5 2/5

]
.

Definition 8. Let V be a vector space, and let T be a linear transformation from V to V . A scalar
λ is an eigenvalue for T if there exists an nonzero f in V such that T (f) = λf . Such an f is called
an eigenfunction (or eigenmatrix, etc.) if V is a space of functions (or matrices, etc.). In general,
we still call f an eigenvector though f may not be a vector.

If V is finite dimensional, then a basis D of V of eigenvectors of T is an eigenbasis of T . T is
diagonalizable if the matrix for T with respect to some basis is diagonal, and T is diagonalizable if
and only if T has an eigenbasis.

Example 9. Consider the map T (A) = AT from R2×2 to R2×2. Is the transformation T diagonal-
izable? If so, find an eigenbasis for T .

answer: We will do this problem by expressing T as a matrix, and then computing the
eigenvalues and eigenvectors of this matrix. We follow the notation from Section 4.3.

First we need to pick a basis for the set of 2 × 2 matrices. It doesn’t matter which basis we
choose, so let’s take

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

The B-matrix for T is

B =

[T (f1)]B · · · [T (fn)]B

 ,
where f1, f2, f3, and f4 are the matrices in our basis. You may need to review the definition of
coordinates from Section 3.4.

Now we compute B:

T (f1) = T

([
1 0
0 0

])
=

[
1 0
0 0

]T
=

[
1 0
0 0

]
T (f2) = T

([
0 1
0 0

])
=

[
0 1
0 0

]T
=

[
0 0
1 0

]
T (f3) = T

([
0 0
1 0

])
=

[
0 0
1 0

]T
=

[
0 1
0 0

]
T (f4) = T

([
0 0
0 1

])
=

[
0 0
0 1

]T
=

[
0 0
0 1

]
,

hence

[T (f1)]B =


1
0
0
0

 , [T (f2)]B =


0
0
1
0

 , [T (f3)]B =


0
1
0
0

 , [T (f4)]B =


0
0
0
1

 , and
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B =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .
The eigenvalues of T are the eigenvalues of B, so we compute

det(B − λI) = det


1− λ 0 0 0

0 −λ 1 0
0 1 −λ 0
0 0 0 1− λ

 = (λ− 1)3(λ+ 1).

Hence the eigenvalues of B are 1 (with algebraic multiplicity 3) and −1 (with algebraic multiplicity
1).

The eigenspaces are

E1 = ker


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 = ker


0 1 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 = span




1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1


 ,

E−1 = ker


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 = ker


1 0 0 0
0 1 1 0
0 0 0 1
0 0 0 0

 = span




0
−1
1
0


 .

The dimensions of the eigenspaces add up to 4, so T is diagonalizable. That is, T is given by

the diagonal matrix D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, and you may verify that D = S−1BS for the matrix

S =


1 0 0 0
0 1 0 −1
0 1 0 1
0 0 1 0

 (the columns of S are the eigenvectors of B).

These four vectors




1
0
0
0

 ,


0
1
1
0

 ,


0
0
0
1

 ,


0
−1
1
0


 correspond to the eigenmatrices:

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 −1
1 0

]
,

and you may verify that

T

([
1 0
0 0

])
= 1 ·

[
1 0
0 0

]
, T

([
0 1
1 0

])
= 1 ·

[
0 1
1 0

]
, T

([
0 0
0 1

])
= 1 ·

[
0 0
0 1

]
,

T

([
0 −1
1 0

])
= −1 ·

[
0 −1
1 0

]
.

Example 10. Consider the linear transformation T (f(x)) = f(2x − 1) from P2 to P2. Is T
diagonalizable? If so, find an eigenbasis D and the D-matrix D of T .

answer: We proceed follow the same steps as in the previous problem, this time with the basis

B = {1, x, x2}. In this basis, the B-matrix is B =

1 −1 1
0 2 −4
0 0 4

. B has three distinct eigenvalues,
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so it is diagonalizable, and the diagonal matrix is D =

1 0 0
0 2 0
0 0 4

 since the eigenvalues are 1, 2,

and 4. If you compute the eigenspaces, you will find that

E1 = span


1

0
0

 E2 = span


−1

1
0

 E4 = span


 1
−2
1

 ,

which correspond to the eigenfunctions 1, x− 1, and x2 − 2x+ 1. We verify that these are indeed
eigenfunctions for their corresponding eigenvalues.

T (1) = 1 = 1 · 1.
T (x− 1) = (2x− 1)− 1 = 2 · (x− 1).

T (x2 − 2x+ 1) = (2x− 1)2 − 2(2x− 1) + 1 = 4x2 − 8x+ 4 = 4 · (x2 − 2x+ 1).

Example 11. Let V be the space of all infinite sequences of real numbers, and let T be the shift
map:

T (x0, x1, x2, . . .) = (x1, x2, . . .).

Find all eigenvalues and eigensequences of T .
answer: A sequence (x0, x1, x2, . . .) is an eigensequence for the eigenvalue λ if and only if

T (x0, x1, x2, . . .) = λ(x0, x1, x2, . . .).

On the other hand, by the definition of T , we have

T (x0, x1, x2, . . .) = (x1, x2, . . .).

Thus to be an eigensequence, we have

λ(x0, x1, x2, . . .) = (x1, x2, . . .),

which implies that

x1 = λx0

x2 = λx1 = λ2x0

x3 = λx2 = λ3x0

...

hence an eigensequnce has the form (x0, λx0, λ
2x0, . . .). Moreover, we are free to choose λ and

x0. So, every real number is an eigenvalue for T , and for each eigenvalue λ, the corresponding
eigenspace is

Eλ = span{(1, λ, λ2, . . .)}.


