
1. Vector spaces

(1) Define vector space: V is a vector space if ...

(2) Define vector subspace: W is a subspace of a vector space V if ...

(3) Determine which of the following sets are vector subspaces.

(a)

{[
x
y

]
: x ≥ 0, y ≥ 0

}
(b)

{[
x
y

]
: xy ≥ 0

}

(c)


 1− a
a− 6b
2b + a

 : a, b ∈ R


(d)


2b + 3c

b
c

 : b, c ∈ R


(e) {p(t) ∈ P2 : p(2) = 0}, (P2 is the set

of polynomials of degree at most 2).

(f) {p(t) ∈ P2 :
∫ 1
0 p(t) dt = 0}

(g) {p(t) ∈ P2 : p(t) = p(−t)}
(h) {p(t) ∈ P2 : − p(t) = p(−t)}

(i)

A ∈ R3×3 :

1
2
3

 ∈ ker(A)


(j)
{
B ∈ R3×3 : B is in reduced row-echelon form

}
(k)

{
A ∈ R2×2 :

[
1 1
1 1

]
A = A

[
2 0
0 0

]}
(l) The set of infinite sequences of the form

(a, a+k, a+ 2k, a+ 3k, . . .) where a and
k are constants.

(m) The set of infinite sequences of the form
(a, ak, ak2, ak3, . . .) where a and k are
constants.

(4) Find a basis and determine the dimension of each of the following subspaces.

(a) The space of all polynomials f(t) ∈ P3 such that f(1) = 0 and
∫ 1
−1 f(t) dt = 0.

(b) The space of all lower triangular 2× 2 matrices.

(c) The space of all 2× 2 matrices A such that A

[
1 1
1 1

]
=

[
0 0
0 0

]
.

(5) Find all solutions of the differential equation f ′′(x) + 8f ′(x)− 20f(x) = 0. (See Example 3
in the 4.2 notes.)

selected answers:

(3) Recall that a space W is a vector subspace if
• W contains the zero element.
• W is closed under addition: if f and g are in W , then f + g is in W .
• W is closed under scalar multiplication: if f is in W , then kf is in W for every scalar
k.

(a) W =

{[
x
y

]
: x ≥ 0, y ≥ 0

}
is not a subspace because it is not closed under scalar

multiplication: the vector

[
1
1

]
is in W , but −

[
1
1

]
=

[
−1
−1

]
is not in W .

Note that this is the only reason why W fails to be a vector space. W contains

[
0
0

]
,

the zero element, and W is closed under addition: if

[
x1
y1

]
and

[
x2
y2

]
are in W , then[

x1
y1

]
+

[
x2
y2

]
=

[
x1 + x2
y1 + y2

]
is in W since x1 + x2 ≥ 0 and y1 + y2 ≥ 0.

1
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(b) W =

{[
x
y

]
: xy ≥ 0

}
is not a vector subspace because it is not closed under addition:

the vectors

[
1
0

]
and

[
0
−1

]
are in W , but

[
1
0

]
+

[
0
−1

]
=

[
1
−1

]
is not in W .

This space does contain

[
0
0

]
, the zero element, and this space is closed under scalar

multiplication: if

[
x
y

]
is in W , then k

[
x
y

]
=

[
kx
ky

]
is in W since (kx)(ky) = k2xy ≥ 0.

(xy ≥ 0 since

[
x
y

]
is in W ).

(c) W =


 1− a
a− 6b
2b + a

 : a, b ∈ R

 is not a vector subspace because, for example, it does not

contain the zero element: there are no real numbers a and b such that

 1− a
a− 6b
2b + a

 =[
0, 0, 0

]
.

(f) W = {p(t) ∈ P2 :
∫ 1
0 p(t) dt = 0} is a vector subspace: 1) W contains the zero function

p0(t) = 0 + 0t + 0t2 since
∫ 1
0 0 + 0t + 0t2 dt = 0. 2) W is closed under addition:

if p1(t) and p2(t) are in W , then p1(t) + p2(t) is in W since
∫ 1
0 p1(t) + p2(t) dt =∫ 1

0 p1(t) dt+
∫ 1
0 p2(t) dt = 0 + 0 = 0. 3) W is closed under scalar multiplication: if p(t)

is in W , then kp(t) is in W since
∫ 1
0 kp(t) dt = k

∫ 1
0 p(t) dt = k · 0 = 0.

(i) W =

A ∈ R3×3 :

1
2
3

 ∈ ker(A)

 is a vector subspace: 1) W contains the zero matrix0 0 0
0 0 0
0 0 0

 since

1
2
3

 is in the kernel of

0 0 0
0 0 0
0 0 0

. 2) W is closed under addition: if

A1 and A2 are in W , then A1 +A2 is in W since (A1 +A2)

1
2
3

 = A1

1
2
3

+A2

1
2
3

 =0
0
0

+

0
0
0

 =

0
0
0

. 3) W is closed under scalar multiplication: if A is in W , then kA

is in W since (kA)

1
2
3

 = kA

1
2
3

 = k

0
0
0

 =

0
0
0

.

(l) W = {(a, a + k, a + 2k, a + 3k, . . .)} is a vector space: 1) W contains the sequence
(0, 0, 0, . . .) (a = k = 0). 2) W is closed under addition: if (a1, a1 + k1, a1 + 2k1, . . .)
and (a2, a2 + k2, a2 + 2k2, . . .) are in W , then the sum of the sequences is in W since
(a1, a1 + k1, a1 + 2k1, . . .) + (a2, a2 + k2, a2 + 2k2, . . .) = (a1 + a2, a1 + a2 + k1 + k2, a1 +
a2 + 2k1 + 2k2, . . .) = (a, a + k, a + 2k, . . .) where a = a1 + a2 and k = k1 + k2.

(4) To find a basis, we need to write down a general element of the vector space and determine
the number of free variables.
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(a) A general polynomial of degree 3 has the form f(t) = a + bt + ct2 + dt3. Additionally,

if f(1) = 0, then a + b + c + d = 0, and if
∫ 1
−1 f(t) dt = 0, then

0 =

∫ 1

−1
a + bt + ct2 + dt3 dt = at +

bt2

2
+

ct3

3
+

dt4

4

∣∣∣1
−1

=

(
a +

b

2
+

c

3
+

d

4

)
−
(
−a +

b

2
− c

3
+

d

4

)
= 2a +

2c

3
.

We must now solve the system of equations

2a +
2c

3
= 0

a + b + c + d = 0.

Putting these in an augmented matrix, we have[
2 0 2/3 0 0
1 1 1 1 0

]
∼
[
1 0 1/3 0 0
1 1 1 1 0

]
∼
[
1 0 1/3 0 0
0 1 2/3 1 0

]
,

hence a = − c
3 and b = −2c

3 − d. Plugging these back into the equation for f(t), we see
that

f(t) = − c

3
−
(

2c

3
+ d

)
t + ct2 + dt3 = c

(
−1

3
− 2

3
t + t2

)
+ d

(
−t + t3

)
.

Thus f is a linear combination of the polynomials t3 − t and t2 − 2
3 t −

1
3 . Moreover,

these polynomials form a linearly independent set, and thus give a basis for this space:
B =

{
t3 − t, t2 − 2

3 t−
1
3

}
. There are two elements in the basis, so the dimension of

this vector space is 2.

(c) A general 2× 2 matrix is A =

[
a b
c d

]
. For A to satisfy the condition to be in the set,

we have [
0 0
0 0

]
=

[
a b
c d

] [
1 1
1 1

]
=

[
a + b a + b
c + d c + d

]
Hence a = −b and c = −d, and

A =

[
−b b
−d d

]
= b

[
−1 1
0 0

]
+ d

[
0 0
−1 1

]
.

Thus a basis for this space is B =

{[
−1 1
0 0

]
,

[
0 0
−1 1

]}
, and the dimension of this

space is 2.

2. Linear transformations

(1) Define linear transformation: a function T from a vector space V to a vector space W is a
linear transformation if ...

(2) Which of the transformations are linear? For those that are linear, determine whether they
are isomophisms.
(a) T (M) = M + I2 from R2×2 to R2×2.

(b) T (M) = 7M from R2×2 to R2×2.

(c) T (M) = M2 from R2×2 to R2×2.

(d) T (M) =

[
1 2
3 4

]
M from R2×2 to R2×2.
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(e) T (M) = M

[
1 2
3 4

]
M from R2×2 to R2×2.

(f) T (a + bi) = a from C to C. (C is the set of complex numbers.)

(g) T (a + bi) = b + ai from C to C.

(h) T (f(t)) = f(7) from P2 to R.

(i) T (f(t)) = f ′′(t)f(t) from P2 to P2.

(j) T (f(t)) = f(−t) from P2 to P2.

(k) T (f(t)) = f(2t)− f(t) from P2 to P2.

(3) Define image: the image of a linear transformation T is ...

(4) Define rank : the rank of a linear transformation T is ...

(5) Define kernel : the kernel of a linear transformation T is ...

(6) Define nullity : the nullity of a linear transformation T is ...

(7) Find the image, rank, kernel, and nullity of the transformation T from P2 to P2 defined by
T (f(t)) = f ′′(t) + 4f ′(t).

(8) Find the image, rank, kernel, and nullity of the transformation T from P2 to R defined by

T (f(t)) =
∫ 3
−2 f(t) dt.

(9) Find the image, rank, kernel, and nullity of the transformation T from R2×2 to R2×2 defined

by T (M) = M

[
1 2
0 1

]
−
[
1 2
0 1

]
M .

selected answers:

(2) T is a linear transformation from V to W if T (kf) = kT (f) and T (f + g) = T (f) + T (g),
for any f and g in V and any scalar k. T is an isomorphism if T is invertible; to show
that T is invertible, you either need to find the inverse of T , or show that a matrix for T is
invertible.
(a) T is not a linear transformation: T (M + N) = M + N + I and T (M) + T (N) =

M + I + N + I, thus T (M + N) 6= T (M) + T (N).
(b) T is a linear transformation: T (M + N) = 7(M + N) = 7M + 7N = T (M) + T (N);

T (kM) = 7(kM) = k(7M) = kT (M).
T is an isomorphism. We can show that T is invertible by writing down the inverse
function for T : T−1(M) = M/7. To verify that this map is the inverse of T , we check
that T (T−1(M)) = T−1(T (M)) = M :

T (T−1(M)) = T (M/7) = M

T−1(T (M)) = T−1(7M) = M.

We can also show that T is invertible by expressing T as a matrix and showing that
that matrix is invertible. To express T as a matrix, we need to fix a basis, and express
T in terms of this basis. (See problems 4, 5, and 6 of the next section.) Let’s take

B =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
. Then the matrix for T in this basis is

B =

 | |
[T (v1)]B · · · [T (vn)]B
| |

 ,
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where v1, v2, v3, and v4 are the basis elements. We compute these columns:

T (v1) = T

([
1 0
0 0

])
= 7

[
1 0
0 0

]
, so [T (v1)]B =


7
0
0
0

 ,

T (v2) = T

([
0 1
0 0

])
= 7

[
0 1
0 0

]
, so [T (v1)]B =


0
7
0
0

 ,

T (v3) = T

([
0 0
1 0

])
= 7

[
0 0
1 0

]
, so [T (v1)]B =


0
0
7
0

 ,

T (v4) = T

([
0 0
0 1

])
= 7

[
0 0
0 1

]
, so [T (v1)]B =


0
0
0
7

 ,

hence B =


7 0 0 0
0 7 0 0
0 0 7 0
0 0 0 7

, which is invertible, so T is invertible.

(c) T is not a linear transformation: T (kM) = (kM)2 = k2M2 and kT (M) = kM2, thus
T (kM) 6= kT (M).

(h) T is a linear transformation: T (f(t) + g(t)) = f(7) + g(7) = T (f(t)) + T (g(t)), and
T (kf(t)) = kf(7) = kT (f(t)).
T is not a linear transformation. There is no way to write down an inverse function
for T ; knowing f(7) is not enough to detemine the function f(t).
We can see this by writing down a matrix for T . Let’s take the basis B = {1, t, t2}.
Then

B =

 | | |
[T (1)]B [T (t)]B [T (t2)]B
| | |

 ,

where

T (1) = 1⇒ [T (1)]B =

1
0
0


T (t) = 7⇒ [T (t)]B =

7
0
0


T (t2) = 49⇒ [T (t2)]B =

49
0
0

 .
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So B =

1 7 49
0 0 0
0 0 0

, which is not invertible, so T is not invertible.

(k) T is a linear transformation: T (f(t) + g(t)) = f(2t) + g(2t)− f(t)− g(t) = T (f(t)) +
T (g(t)) and T (kf(t)) = kf(2t)− kf(t) = k(f(2t)− f(t)) = kT (f(t)).
T is not an isomorphism. Let’s take B = {1, t, t2}. Then

T (1) = 1− 1 = 0⇒ [T (1)]B =

0
0
0


so B =

0 ? ?
0 ? ?
0 ? ?

, which is not invertible, so T is not invertible.

(7) In order to answer these questions, we should find a basis for the image and kernel of the
linear transformation. To do this, we should write down a general element in the image and
kernel of the map.

Let’s find a basis for the image: we have f(t) = a + bt + ct2, and

T (f(t)) = T (a + bt + ct2) = 2c + 4(2ct + b) = c(2 + 8t) + b(4).

Hence the image of T is spanned by the polynomials 4 and 8t+ 2. These polynomials form
a linearly independent set, so we have a basis for the image: B = {4, 8t + 2}. There are
two elements in the basis, so the rank of T is 2.

By the rank-nullity theorem, rank(T ) + nullity(T ) = 3, so the nullity of T is 1. To find
the kernel of T , we need a general element in the kernel, that is, we need T (f(t)) = 0. From
before, we have

0 = T (f(t)) = 2c + 4b + 8ct⇒ c = 0⇒ b = 0

Hence f(t) is in the kernel of T if and only if f(t) = a · 1, that is, ker(T ) = span{1}. Again
we see that the nullity of T is one since the dimension of the kernel is 1.

(9) Let M =

[
a b
c d

]
. We have

T (M) =

[
a b
c d

] [
1 2
0 1

]
−
[
1 2
0 1

] [
a b
c d

]
=

[
a 2a + b
c 2c + d

]
−
[
a + 2c b + 2d

c d

]
=

[
−2c 2a− 2d

0 2c

]
= a

[
0 2
0 0

]
+ c

[
−2 0
0 2

]
+ d

[
0 −2
0 0

]
.

We see that the image of T is spanned by three matrices, but only two of these are linearly

independent; a basis for the image is B =

{[
0 2
0 0

]
,

[
−2 0
0 2

]}
, and the rank of this map

is 2.
As for the kernel, we need T (M) = 0:

0 = T (M) =

[
−2c 2a− 2d

0 2c

]
,

hence c = 0, a = d, and b is free. So if M is in the kernel of T , then M =

[
a b
0 a

]
=

a

[
1 0
0 1

]
+ b

[
0 1
0 0

]
. Thus a basis for the kernel is K =

{[
1 0
0 1

]
,

[
0 1
0 0

]}
, and the nullity

of T is 2.
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3. Matrix of a linear transformation

(1) If T is a linear transformation from Rn to Rn, then the standard matrix for T in the standard
basis E = {~e1, . . . , ~en} of Rn is

A =

 | |
T (~e1) · · · T (~en)
| |

 .

More generally, given any basis B = {~v1, . . . , ~vn} of Rn, the B-matrix of T is

B =

 | |
[T (~v1)]B · · · [T (~vn)]B
| |

 .

Moreover, AS = SB for the matrix

S =

 | |
~v1 · · · ~vn
| |

 .

These matrices are related according to the diagram

[~x]B

~x T (~x)

[T (~x)]B
B

S

A

S

What is the standard basis for Rn? That is, what are the vectors ~e1, . . . , ~en?

(2) Let T be the linear transformation defined by

T

ab
c

 =
1

7

 −9a− 6c
−4a + 7b + 2c
−4a− 19c

 .

(a) Compute the standard matrix for T .

(b) Let ~x =
[
2 −1 −3

]T
. Verify that T (~x) = A~x.

Let B =


0

1
0

 ,

 3
1
−1

 ,

1
0
2

.

(c) What is S?
(d) Compute [~x]B and [T (~x)]B.
(e) Verify that S[~x]B = ~x and S[T (~x)]B = T (~x).
(f) Compute B, the B-matrix of T .
(g) Verify that B[~x]B = [T (~x)]B.
(h) Verify that AS = SB.

(3) Repeat problem 2 for the linear transformation T defined by

T (~y) = ~y × 〈2, 1, 1〉,

the vector ~x =
[
2 −1 3

]T
, and the basis B =


0

1
1

 ,

 2
−1
−1

 ,

 0
−1
1

.
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(4) Let V be an n-dimensional vector space, and let T be a linear transformation from V to
V . Let A = {w1, . . . , wn} and B = {v1, . . . , vn} be two bases for V . Then we have the
following diagram:

f

[f ]A

[f ]B

T (f)

[T (f)]A

[T (f)]B

T

LA

LB

LA

LB

A

B

S S

where

A =

 | |
[T (w1)]A · · · [T (wn)]A
| |

 , B =

 | |
[T (v1)]B · · · [T (vn)]B
| |

 ,

S =

 | |
[v1]A · · · [vn]A
| |

 , and LA and LB are the standard coordinate maps.

How are these standard coordinate maps defined?

(5) Let T be the linear transformation from P2 to P2 defined by

T (f(x)) = f(3) + f ′(x).

Let A = {1, x, x2} and B = {1, (x− 3), (x− 3)2}.
(a) Compute A, B, and S. Verify that AS = SB.
(b) Let f(x) = 1 + 4x− x2. Compute [f ]A, [f ]B, T (f), [T (f)]A, and [T (f)]B.
(c) Verify that A[f ]A = [T (f)]A, B[f ]B = [T (f)]B, S[f ]B = [f ]A, and S[T (f)]B = [T (f)]A.
(d) Use the matrix B to determine the image, rank, kernel, and nullity of T .

(6) Let W be the set of upper-triangular 2× 2 matrices, and let T be the linear transformation
from W to W defined by

T (M) = M

[
1 2
0 1

]
−
[
1 2
0 1

]
.

Let A =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}
and B =

{[
1 0
0 1

]
,

[
0 1
0 0

]
,

[
1 0
0 −1

]}
.

(a) Compute A, B, and S. Verify that AS = SB.

(b) Let M =

[
1 2
0 1

]
. Compute [M ]A, [M ]B, T (M), [T (M)]A, and [T (M)]B.

(c) Verify that A[M ]A = [T (M)]A, B[M ]B = [T (M)]B, S[M ]B = [M ]A, and S[T (M)]B =
[T (M)]A.

(d) Determine the image, rank, kernel, and nullity of T .

(7) Define isomorphism: a linear transformation T is an isomorphism if ...

(8) For which constants k is the linear transformation T (M) =

[
2 3
0 4

]
M − M

[
3 0
0 k

]
an

isomorphism from R2×2 to R2×2?
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(9) Let R+ be the set of positive real numbers. On this space, addition ⊕ and scalar multipli-
cation � defined by: a⊕ b = ab, k � a = ak.
(a) Show that R+ with the operations ⊕ and � is a vector space.

(b) Show that T (x) = ln(x) is a linear transformation from R+ to R.

(c) Is T an isomorphism?

selected answers:

(3) (a) The standard matrix is A =

 | |
T (~e1) · · · T (~en)
| |

, so we compute:

T (e1) = 〈1, 0, 0〉 × 〈2, 1, 1〉 =

∣∣∣∣∣∣
i j k
1 0 0
2 1 1

∣∣∣∣∣∣ = 〈0,−1, 1〉 =

 0
−1
1


T (e2) = 〈0, 1, 0〉 × 〈2, 1, 1〉 =

∣∣∣∣∣∣
i j k
0 1 0
2 1 1

∣∣∣∣∣∣ = 〈1, 0,−2〉 =

 1
0
−2


T (e3) = 〈0, 0, 1〉 × 〈2, 1, 1〉 =

∣∣∣∣∣∣
i j k
0 0 1
2 1 1

∣∣∣∣∣∣ = 〈−1, 2, 0〉 =

−1
2
0

 .

We have

A =

 0 1 −1
−1 0 2
1 −2 0

 .

(b) We evaluate:

T (~x) = T (
[
2 −1 3

]T
) =

∣∣∣∣∣∣
i j k
2 −1 3
2 1 1

∣∣∣∣∣∣ =

−4
4
4


A~x =

 0 1 −1
−1 0 2
1 −2 0

 2
−1
3

 =

−4
4
4

 .

(c) S =

0 2 0
1 −1 −1
1 −1 1


(d) To compute [x]B, we reduce the augmented matrix

[
S ~x

]
:0 2 0 2

1 −1 −1 −1
1 −1 1 3

 ∼
1 −1 −1 −1

0 1 0 1
0 0 2 4

 ∼
1 0 0 2

0 1 0 1
0 0 1 2


so [x]B =

2
1
2

. To find [T (x)]B, we reduce
[
S T (x)

]
:

0 2 0 −4
1 −1 −1 4
1 −1 1 4

 ∼
1 −1 −1 4

0 1 0 −2
0 0 2 0

 ∼
1 0 0 2

0 1 0 −2
0 0 1 0


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hence [T (x)]B =

 2
−2
0

.

(e)

S[x]B =

0 2 0
1 −1 −1
1 −1 1

2
1
2

 =

 2
−1
3

 = x

S[T (x)]B =

0 2 0
1 −1 −1
1 −1 1

 2
−2
0

 =

−4
4
4

 = T (x).

(f) B =

 | |
[T (~v1)]B · · · [T (~vn)]B
| |

, so we compute:

T (v1) =

 0 1 −1
−1 0 2
1 −2 0

0
1
1

 =

 0
2
−2

 = −2v3

T (v2) =

 0 1 −1
−1 0 2
1 −2 0

 2
−1
−1

 =

 0
−4
4

 = 4v3

T (v3) =

 0 1 −1
−1 0 2
1 −2 0

 0
−1
1

 =

−2
2
2

 = v1 − v2.

Thus B =

 0 0 1
0 0 −1
−2 4 0

.

(g)

B[x]B =

 0 0 1
0 0 −1
−2 4 0

2
1
2

 =

 2
−2
0

 = [T (x)]B.

(h)

AS =

 0 1 −1
−1 0 2
1 −2 0

0 2 0
1 −1 −1
1 −1 1

 =

 0 0 −2
2 −4 2
−2 4 2


SB =

0 2 0
1 −1 −1
1 −1 1

 0 0 1
0 0 −1
−2 4 0

 =

 0 0 −2
2 −4 2
−2 4 2

 .

(5) (a) For A, we have

T (1) = 1⇒ [T (1)]A =

1
0
0


T (x) = 3 + 1 = 4⇒ [T (x)]A =

4
0
0

 T (x2) = 9 + 2x⇒ [T (x2)]A =

9
2
0

 .



11

So A =

1 4 9
0 0 2
0 0 0

. For B, we have

T (1) = 1⇒ [T (1)]B =

1
0
0


T (x− 3) = 0 + 1 = 1⇒ [T (x− 3)]B =

1
0
0


T ((x− 3)2) = 0 + 2(x− 3)⇒ [T ((x− 3)2)]B =

0
2
0

 .

So B =

1 1 0
0 0 2
0 0 0

. For S,

[1]A =

1
0
0

 [x− 3]A =

−3
1
0

 [(x− 3)2]A = [x2 − 6x + 9]A =

 9
−6
1


So S =

1 −3 9
0 1 −6
0 0 1

. Lastly,

AS =

1 4 9
0 0 2
0 0 0

1 −3 9
0 1 −6
0 0 1

 =

1 1 −6
0 0 2
0 0 0


SB =

1 −3 9
0 1 −6
0 0 1

1 1 0
0 0 2
0 0 0

 =

1 1 −6
0 0 2
0 0 0

 .

(b) For [f ]A, we just take the coefficients of the polynomial:

[f ]A =

 1
4
−1

 .

Since S[f ]B = [f ]A, we can solve for [f ]B by reducing the matrix
[
S [f ]A

]
:1 −3 9 1

0 1 −6 4
0 0 1 −1

 ∼
1 −3 0 10

0 1 0 −2
0 0 1 −1

 ∼
1 0 0 4

0 1 0 −2
0 0 1 −1

 ,

hence [f ]B =

 4
−2
−1

.

T (f) = T (1 + 4x− x2) = 4 + 4− 2x = 8− 2x,

[T (f)]A =

 8
−2
0

 ,
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and [T (f)]B comes from reducing
[
S [T (f)]A

]
:1 −3 9 8

0 1 −6 −2
0 0 1 0

 ∼
1 −3 0 8

0 1 0 −2
0 0 1 0

 ∼
1 0 0 2

0 1 0 −2
0 0 1 0

⇒ [T (f)]B =

 2
−2
0

 .

(c)

A[f ]A =

1 4 9
0 0 2
0 0 0

 1
4
−1

 =

 8
−2
0

 = [T (f)]A

B[f ]B =

1 1 0
0 0 2
0 0 0

 4
−2
−1

 =

 2
−2
0

 = [T (f)]B

S[f ]B =

1 −3 9
0 1 −6
0 0 1

 4
−2
−1

 =

 1
4
−1

 = [f ]A

S[T (f)]B =

1 −3 9
0 1 −6
0 0 1

 2
−2
0

 =

 8
−2
0

 = [T (f)]A

(d) B has two pivots, so the rank(T ) = 2 and nullity(T ) = 1. The pivot columns of B
correspond to the polynomials 1 and 2(x− 3), thus the im(T ) = span{1, 2(x− 3)}. In
fact, this is a basis for im(T ) as these polynomials are linearly independent. To find
the kernel of T , we look at the kernel of B, from which we see that x1 = −x2 and

x3 = 0. Thus ker(B) = span


−1

1
0

. This vector corresponds to the polynomial

(x− 3)− 1, hence ker(T ) = span{x− 4}. We verify that x− 4 is in the kernel of T :

T (x− 4) = −1 + 1 = 0.

4. Eigenspaces

(1) Which of the following matrices A are diagonalizable? If possible, find an invertible matrix
S and a diagonal matrix D for which A = SDS−1.

(a)

[
2 1
0 3

]

(b)

1 0 1
0 2 0
0 0 1


(c)

[
1 1
2 2

]

(d)

1 1 0
0 2 2
0 0 3


(e)

[
1 2
3 6

]

(f)

3 −4 0
2 −3 0
0 0 1


(g)

[
2 0
−1 2

]

(h)

1 1 1
1 1 1
1 1 1


(2) For what values of a, b, and c are the matrices diagonalizable?

(a)

[
1 a
0 b

]
(b)

[
1 1
a 1

]
(c)

1 a b
0 2 c
0 0 1

 (d)

0 0 0
1 0 a
0 1 0


(3) Find all eigenvalues and “eigenvectors” of the linear transformations and determine if they

are diagonalizable.



13

(a) T (A) = A + AT from R2×2 to R2×2.

(b) T (A) = A−AT from R2×2 to R2×2.

(c) T (x + iy) = x− iy from C to C.

(d) T (f(x)) = f(−x) from P2 to P2.

(e) T (f(x)) = f(3x− 1) from P2 to P2.

(4) Find all eigenvalues and “eigenvectors” of the linear transformations.
(a) T (x0, x1, x2, . . .) = (x2, x3, x4, . . .) from the space of infinite sequences to itself.

(b) T (x0, x1, x2, . . .) = (x0, x2, x4, . . .).

(5) If A =

[
1 2
0 3

]
, find a basis of the linear space V of all 2×2 matrices S such that AS = SD,

where D =

[
1 0
0 3

]
. Find the dimension of V .

5. True/false

T F : The space R2×3 is 5-dimensional.
T F : If f1, . . . , fn is a basis of a linear space V , then any element of V can be written

as a linear combination of f1, . . . , fn.
T F : The space P1 is isomorphic to C.
T F : If the kernel of a linear transformation T from P4 to P4 is {0} then T is an

isomorphism.
T F : If T is a linear transformation from P6 to R2×2, then the kernel of T must be

3-dimensional.
T F : The polynomials of degree less than 7 form a 7-dimensional vector space.
T F : The function T (f) = 3f − 4f ′ is a linear transformation from C∞ to C∞.
T F : The kernel of a linear transformation is a subspace of the domain.
T F : The linear transformation T (f) = f + f ′′ is an isomorphism from C∞ to C∞.
T F : All linear transformations from P3 to R2×2 are isomorphisms.
T F : If a linear space V can be spanned by 10 elements, then dim(V ) ≤ 10.
T F : If T is an isomorphism, then T−1 is an isomorphism.

T F : The matrix

[
−1 6
−2 6

]
is similar to

[
3 0
0 2

]
.

T F : The matrix

[
−1 6
−2 6

]
is similar to

[
1 2
−1 4

]
.

6. more

(1) Consider a nonzero 3× 3 matrix A such that A2 = 0.
(a) Show that the image of A is a subspace of the kernel of A.
(b) Find the dimensions of the image and kernel of A.
(c) Pick a nonzero vector v1 in the image of A, and write v1 = Av2 for some v2 in R3.

Let v3 be a vector in the kernel of A that is not a scalar multiple of v1. Show that
B = {v1, v2, v3} is a basis of R3.

(d) Find the matrix B of the linear transformation T (~x) = A~x with respect to the basis
B.


