QUIZ 4 UNIVERSITY OF MASSACHUSETTS AMHERST MATH 235 – Spring 2014 February 25, 2014

NAME:

- (1) (1 point) Give the definition for the span of a set of vectors, $\vec{v}_1, \ldots, \vec{v}_m$. ANSWER: span{ $\vec{v}_1, \ldots, \vec{v}_m$ } is the set of all linear combinations of $\vec{v}_1, \ldots, \vec{v}_m$.
- (2) (1 point) Give the definition for the kernel of a linear transformation T.
 ANSWER: ker(T) is the set of all solutions to T(x) = 0. It is also the set of all solutions to Ax = 0, where A is the matrix associated to T.

(3) (3 points) Determine if $\vec{b} = \begin{bmatrix} -6\\2\\3 \end{bmatrix}$ is in the image of $A = \begin{bmatrix} 4 & 2 & 0\\0 & 1 & 1\\-1 & 0 & 1 \end{bmatrix}$. If it is, express \vec{b} as a linear combination of the columns of A.

ANSWER: This is asking if there is a solution $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ to the equation $A\vec{x} = \vec{b}$. We can find all solutions to this equation by reducing the augmented matrix associated to this system.

$$\begin{bmatrix} 4 & 2 & 0 & -6 \\ 0 & 1 & 1 & 2 \\ -1 & 0 & 1 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ 4 & 2 & 0 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 2 & 4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & 2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Now that the matrix is in reduced form, we see that $x_1 = -2$, $x_2 = 1$, and $x_3 = 1$ is a solution (in fact, it is the unique solution), so \vec{b} is in im(A). Recalling that $A\vec{x}$ is a linear combination of the columns of A, we have

$$\vec{b} = A\vec{x} = x_1 \begin{bmatrix} 4\\0\\-1 \end{bmatrix} + x_2 \begin{bmatrix} 2\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 0\\1\\1 \end{bmatrix} = -2 \begin{bmatrix} 4\\0\\-1 \end{bmatrix} + 1 \begin{bmatrix} 2\\1\\0 \end{bmatrix} + 1 \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$

(4) (1 point each) True/False: circle \mathbf{T} or \mathbf{F} .

T F : The vector
$$\begin{bmatrix} 1 \\ -4 \end{bmatrix}$$
 is in the kernel of the matrix $\begin{bmatrix} 4 & -1 \\ 8 & 2 \end{bmatrix}$

False. Recall that a vector \vec{x} is in the kernel if $A\vec{x} = \vec{0}$. To check if $\begin{bmatrix} 1\\4 \end{bmatrix}$ is in the kernel of the given matrix, we may simply compute the matrix product:

$$\begin{bmatrix} 4 & -1 \\ 8 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -4 \end{bmatrix} = \begin{bmatrix} 8 \\ 0 \end{bmatrix}.$$

The output is not the zero vector, so $\begin{bmatrix} 1 \\ -4 \end{bmatrix}$ is not in the kernel.

T F : If
$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, then $\operatorname{im}(A) = \{\vec{0}\}$.

True. For any vector \vec{x} , the product $A\vec{x}$ is $\vec{0}$. Hence the only vector in the image is the zero vector.

$$\mathbf{T} \qquad \mathbf{F} \quad : \quad \text{If } A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \text{ then } \ker(A) = \{\vec{0}\}.$$

$$\mathbf{False}. \ A\vec{x} = \vec{0} \text{ for any vector in } \mathbb{R}^2, \text{ so } \ker(A) = \mathbb{R}^2.$$

T F : If
$$\vec{x}$$
 is in the kernel of A , then \vec{x} is in the kernel of A^2 . (A is any matrix.)
True. If $\vec{x} \in \ker(A)$, then $A\vec{x} = \vec{0}$. To see if $\vec{x} \in \ker(A^2)$, we compute $A^2\vec{x}$:
 $A^2\vec{x} = AA\vec{x} = A(A\vec{x}) = A\vec{0} = \vec{0}$
Hence $\vec{x} \in \ker(A^2)$.

T F : If \vec{b} is in the image of A, then \vec{b} is in the image of A^2 . Hint: consider the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$.

False. The image of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ contains nonzero vectors (for example, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$). But $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, and the image of $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is just the zero vector. Hence not every vector in the image of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is in the image of $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2$.