1.1 - Introduction to linear systems
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Linear algebra finds its origins in the study of linear systems of equations. Some familiar examples of linear equations are

$$
a x+b y=c \quad \text { and } \quad a x+b y+c z=d .
$$

There is no limit to the number of variables a linear equation can take; a linear equation in n variables has the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b,
$$

where x_{1}, \ldots, x_{n} are variables and a_{1}, \ldots, a_{n}, b are constants, often referred to as coefficients.
Example 1. Solve the system of equations $\left\{\begin{array}{r}x-2 y=1 \\ 2 x+3 y=1\end{array}\right\}$.

The system of equations in this example has a unique solution.
How many solutions do the systems $\left\{\begin{array}{l}y-x=1 \\ y-x=0\end{array}\right\}$ and $\left\{\begin{array}{r}y-x=1 \\ 2 y-2 x=2\end{array}\right\}$ have?

Example 2. Find all solutions to the system of equations $\left\{\begin{array}{r}x+2 y+3 z=0 \\ 4 x+5 y+6 z=3 \\ 7 x+8 y+9 z=0\end{array}\right\}$.

Definition 3. A system of linear equations is inconsistent if it has no solutions. Otherwise, the system is consistent.

Questions: How many solutions can a system of linear equations have? Are there more efficient methods for determining whether or not a system is consistent?

ADDITIONAL EXERCISES

(1) Find all solutions of the linear systems. Give a geometric description of your solutions in terms of intersecting planes.
(a) $\left\{\begin{aligned} x+4 y+z & =0 \\ 4 x+13 y+7 z & =0 \\ 7 x+22 y+13 z & =1\end{aligned}\right\}$
(b) $\left\{\begin{aligned} x+y-z & =0 \\ 4 x-y+5 z & =0 \\ 6 x+y+4 z & =0\end{aligned}\right\}$
(c) $\left\{\begin{aligned} x+4 y+z & =0 \\ 4 x+13 y+7 z & =0 \\ 7 x+22 y+13 z & =0\end{aligned}\right\}$
(2) Consider the system $\left\{\begin{array}{r}x+y-z=-2 \\ 3 x-5 y+13 z=18 \\ x-2 y+5 z=k\end{array}\right\}$ where k is an arbitrary number.
(a) For which value(s) of k is this system consistent?
(b) For each value of k you found in part (a), how many solutions does the system have?
(c) Find all solutions for each value of k.
(3) Find all polynomials $f(t)$ of degree ≤ 2 (i.e. $f(t)=a t^{2}+b t+c$) that satisfy $f(1)=1, f(2)=0$, and $\int_{1}^{2} f(t) d t=-1$.

