2.1 - Linear transformations
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Definition 1. A function T from \mathbb{R}^{m} to \mathbb{R}^{n} is called a linear transformation if there exists an $n \times m$ matrix A such that $T(\vec{x})=A \vec{x}$ for all \vec{x} in \mathbb{R}^{m}. In particular, T maps vectors of length m to vectors of length n.

Theorem 2. A transformation T from \mathbb{R}^{m} to \mathbb{R}^{n} is linear if and only if
(i) $T(\vec{v}+\vec{w})=T(\vec{v})+T(\vec{w})$, for all vectors \vec{v} and \vec{w} in \mathbb{R}^{m}, and
(ii) $T(k \vec{v})=k T(\vec{v})$, for all vectors \vec{v} in \mathbb{R}^{m} and all scalars k.

Example 3. Let $\vec{u}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], \vec{v}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right], \vec{w}=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$, and T be a linear transformation. Suppose that

$$
T(\vec{u})=\left[\begin{array}{l}
0 \\
2 \\
1 \\
0
\end{array}\right], \quad T(\vec{v})=\left[\begin{array}{c}
4 \\
1 \\
0 \\
-1
\end{array}\right] \quad \text { and } \quad T(\vec{w})=\left[\begin{array}{c}
-2 \\
0 \\
0 \\
1
\end{array}\right] .
$$

(i) Evaluate $T(2 \vec{v})$.
(ii) Evaluate $T(\vec{v}-\vec{w})$.
(iii) Evaluate $A\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$.
(iv) What are the dimensions of the matrix A associated to T ?
(v) Find the matrix A.

