2.1 — Linear transformations University of Massachusetts Amherst Math 235 — Spring 2014

Definition 1. A function T from \mathbb{R}^m to \mathbb{R}^n is called a *linear transformation* if there exists an $n \times m$ matrix A such that $T(\vec{x}) = A\vec{x}$ for all \vec{x} in \mathbb{R}^m . In particular, T maps vectors of length m to vectors of length n.

Theorem 2. A transformation T from \mathbb{R}^m to \mathbb{R}^n is linear if and only if (i) $T(\vec{v} + \vec{w}) = T(\vec{v}) + T(\vec{w})$, for all vectors \vec{v} and \vec{w} in \mathbb{R}^m , and (ii) $T(k\vec{v}) = kT(\vec{v})$, for all vectors \vec{v} in \mathbb{R}^m and all scalars k.

Example 3. Let $\vec{u} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{w} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$, and T be a linear transformation. Suppose that $T(\vec{u}) = \begin{bmatrix} 0 \\ 2 \\ 1 \\ 0 \end{bmatrix}$, $T(\vec{v}) = \begin{bmatrix} 4 \\ 1 \\ 0 \\ -1 \end{bmatrix}$ and $T(\vec{w}) = \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. (i) Evaluate $T(2\vec{v})$.

- (ii) Evaluate $T(\vec{v} \vec{w})$.
- (iii) Evaluate $A\begin{bmatrix} 1\\1\\3\end{bmatrix}$.
- (iv) What are the dimensions of the matrix A associated to T?
- (v) Find the matrix A.