2.2 - Linear transformations in space University of Massachusetts Amherst
 Math 235 - Spring 2014

Let A be a matrix representing a linear transformation of the plane $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
How does the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ act on vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in the plane?

How does the matrix $A=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$ act on vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in the plane?

How does the matrix $A=\left[\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right]$ act on vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in the plane?

How does the matrix $A=\left[\begin{array}{ll}1 & 0 \\ k & 1\end{array}\right]$ act on vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in the plane?

The matrix $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ gives a rotation by the angle θ about the origin. How do the matrices $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and $\frac{1}{2}\left[\begin{array}{cc}\sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2}\end{array}\right]$ act on the plane?

Example 1. Recall that $\operatorname{proj}_{\vec{v}}(\vec{x})$ is the orthogonal projection of the vector \vec{x} onto \vec{v}, which is defined by

$$
\operatorname{proj}_{\vec{v}}(\vec{x})=\frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v} .
$$

The projection map is a linear transformation.
(i) Find the matrix corresponding to $\operatorname{proj}_{\vec{v}}$ if $\vec{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$.
(ii) Compute $\operatorname{proj}_{\vec{v}}(\vec{x})$ for $\vec{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\vec{x}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$.

ADDITIONAL EXERCISES
(1) Give a geometric interpretation for the linear transformation $T(\vec{x})=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \vec{x}$.
(2) Give a geometric interpretation for the linear transformation $T(\vec{x})=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right] \vec{x}$.
(3) Give a geometric interpretation for the linear transformation $T(\vec{x})=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right] \vec{x}$.
(4) Let T be a linear transformation given by $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and S be a linear transformation given by $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Is it true that $S(T(\vec{x}))=T(S(\vec{x}))$? Show or Explain.

