2.2 — Linear transformations in space University of Massachusetts Amherst Math 235 — Spring 2014

Let A be a matrix representing a linear transformation of the plane $T \colon \mathbb{R}^2 \to \mathbb{R}^2$. How does the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ act on vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in the plane?

How does the matrix $A = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$ act on vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in the plane?

How does the matrix $A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ act on vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in the plane?

How does the matrix $A = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}$ act on vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in the plane?

The matrix $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ gives a rotation by the angle θ about the origin. How do the matrices $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and $\frac{1}{2} \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$ act on the plane?

Example 1. Recall that $\operatorname{proj}_{\vec{v}}(\vec{x})$ is the orthogonal projection of the vector \vec{x} onto \vec{v} , which is defined by

$$\operatorname{proj}_{\vec{v}}(\vec{x}) = \frac{\vec{v} \cdot \vec{x}}{\vec{v} \cdot \vec{v}} \vec{v}.$$

The projection map is a linear transformation.

- (i) Find the matrix corresponding to $\operatorname{proj}_{\vec{v}}$ if $\vec{v} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$.
- (ii) Compute $\operatorname{proj}_{\vec{v}}(\vec{x})$ for $\vec{v} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} 4\\ -1 \end{bmatrix}$.

ADDITIONAL EXERCISES

(1) Give a geometric interpretation for the linear transformation $T(\vec{x}) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \vec{x}$. (2) Give a geometric interpretation for the linear transformation $T(\vec{x}) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \vec{x}$. (3) Give a geometric interpretation for the linear transformation $T(\vec{x}) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \vec{x}$.

(4) Let T be a linear transformation given by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ and S be a linear transformation given by $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Is it true that $S(T(\vec{x})) = T(S(\vec{x}))$? Show or Explain.