2.4 - Matrix inverse and transpose
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Definition 1. If A is an $m \times n$ matrix, the transpose of A is the $n \times m$ matrix, denoted A^{T}, whose columns are the rows of A.
Example 2. Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 0 & 1\end{array}\right], B=\left[\begin{array}{cc}1 & 2 \\ 0 & 1 \\ -2 & 4\end{array}\right]$. Compute $A^{T}, B^{T}, A B,(A B)^{T}, A^{T} B^{T}, B^{T} A^{T}$.

Theorem 3. Wherever these sums and products are defined,
(a) $\left(A^{T}\right)^{T}=A$.
(b) $(A+B)^{T}=A^{T}+B^{T}$.
(c) $(k A)^{T}=k A^{T}$ for any scalar k.
(d) $(A B)^{T}=B^{T} A^{T}$.

Example 4. Prove that $(A B C)^{T}=C^{T} B^{T} A^{T}$ using properties of matrices.

Definition 5. An $n \times n$ matrix A is invertible if there is an $n \times n$ matrix B such that $A B=B A=I_{n}$, where I_{n} is the $n \times n$ identity matrix. We call B the inverse of A.
Theorem 6. An $n \times n$ matrix A is invertible if and only if $\operatorname{rref}(A)=I_{n}$. Equivalently, $\operatorname{rank}(A)=n$.
Example 7. Which of the following matrices are invertible?

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 2 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 2 & 0 \\
3 & 0 & 0
\end{array}\right]
$$

Theorem 8. If A is invertible, then its inverse is unique.
Proof. Idea: Suppose that B and C are both inverses of A. We want to show that ...

Theorem 9. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] .
$$

If $a d-b c=0$, then A is not invertible.
Proof. Idea: Show that $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$ is the inverse of $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then show that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is not invertible if $a d-b c=0$.

Theorem 10. If A is an $n \times n$ invertible matrix, the equation $A \vec{x}=\vec{b}$ has a unique solution: $\vec{x}=A^{-1} \vec{b}$.
Example 11. Use the inverse of $A=\left[\begin{array}{cc}-7 & 3 \\ 5 & -2\end{array}\right]$ to solve the system $\left\{\begin{array}{r}-7 x_{1}+3 x_{2}=2 \\ 5 x_{1}-2 x_{2}=1\end{array}\right\}$.

Theorem 12. Suppose that A and B are invertible. Then
(a) A^{-1} is invertible, and $\left(A^{-1}\right)^{-1}=A$.
(b) $A B$ is invertible, and $(A B)^{-1}=B^{-1} A^{-1}$.
(c) A^{T} is invertible, and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Proof. Parts (b) and (c):

Algorithm for finding A^{-1} Write A and I side-by-side in an augmented matrix $\left[\begin{array}{ll}A & I\end{array}\right]$ and row reduce. If A is invertible, then $\left[\begin{array}{ll}A & I\end{array}\right]$ will reduce to $\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$.
Example 13. Find the inverse of $A=\left[\begin{array}{ccc}2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ if it exists.

ADDITIONAL EXERCISES

(1) Compute the inverses of the invertible matrices in Example 7.
(2) Prove that if A, B, and C are invertible matrices, then $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.
(3) For which values is k is the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & k \\ 1 & 4 & k^{2}\end{array}\right]$ invertible?
(4) Linear transformations may be used to encrypt messages in the following way. First assign a number to each letter.

A	B	C	D	E	F	G	H	I	J	K	L	M
1	2	3	4	5	6	7	8	9	10	11	12	13
N	O	P	Q	R	S	T	U	V	W	X	Y	Z
14	15	16	17	18	19	20	21	22	23	24	25	26

Then we choose a 2×2 invertible matrix T with which to encrypt our message. The encryption process is the following:

- Break your message into two letter chunks.
- Write each pair of letters as a column vector of two numbers, where the top number corresponds to the first letter, and the bottom number corresponds to the second letter.
- Multiply each vector on the left by the matrix T; the outputs give the encrypted message. For example, to encrypt the message "CODE" using the matrix $T=\left[\begin{array}{cc}6 & -1 \\ -1 & 1\end{array}\right]$, we break "CODE" into to chunks, "CO" and "DE", which are represented by the vectors $\left[\begin{array}{c}3 \\ 15\end{array}\right]$ and $\left[\begin{array}{l}4 \\ 5\end{array}\right]$. Now multiply by T :

$$
\left[\begin{array}{cc}
6 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
3 \\
15
\end{array}\right]=\left[\begin{array}{c}
3 \\
12
\end{array}\right], \quad\left[\begin{array}{cc}
6 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=\left[\begin{array}{c}
19 \\
1
\end{array}\right]
$$

and convert the outputs into the encrypted message: $\left[\begin{array}{c}3 \\ 12\end{array}\right] \rightarrow$ "CL", $\left[\begin{array}{c}19 \\ 1\end{array}\right] \rightarrow$ "SA". Hence "CODE" becomes "CLSA".

Your task (should you choose to accept): Under a different linear transformation, "KEYS" is encrypted as "EFSF". Use this information to decipher the message "OJRCADEBIESB".

