2.4 — Matrix inverse and transpose University of Massachusetts Amherst Math 235 — Spring 2014

Definition 1. If A is an $m \times n$ matrix, the *transpose* of A is the $n \times m$ matrix, denoted A^T , whose columns are the rows of A.

Example 2. Let $A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ -2 & 4 \end{bmatrix}$. Compute $A^T, B^T, AB, (AB)^T, A^TB^T, B^TA^T$.

Theorem 3. Wherever these sums and products are defined, (a) $(A^T)^T = A$. (b) $(A + B)^T = A^T + B^T$. (c) $(kA)^T = kA^T$ for any scalar k. (d) $(AB)^T = B^T A^T$.

Example 4. Prove that $(ABC)^T = C^T B^T A^T$ using properties of matrices.

Definition 5. An $n \times n$ matrix A is *invertible* if there is an $n \times n$ matrix B such that $AB = BA = I_n$, where I_n is the $n \times n$ identity matrix. We call B the *inverse* of A.

Theorem 6. An $n \times n$ matrix A is invertible if and only if $\operatorname{rref}(A) = I_n$. Equivalently, $\operatorname{rank}(A) = n$. Example 7. Which of the following matrices are invertible?

[1 1] [O	ച	[1	2	3	[1	2	3]	Γ	0	0	1]
		0	1	2	0	0	2		0	2	0
$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	IJ	0	0	1	0	0	3		3	0	0

Theorem 8. If A is invertible, then its inverse is unique.

Proof. Idea: Suppose that B and C are both inverses of A. We want to show that ...

Theorem 9. Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

If ad - bc = 0, then A is not invertible.

Proof. Idea: Show that $\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ is the inverse of $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then show that $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is not invertible if ad-bc=0.

Theorem 10. If A is an $n \times n$ invertible matrix, the equation $A\vec{x} = \vec{b}$ has a unique solution: $\vec{x} = A^{-1}\vec{b}$.

Example 11. Use the inverse of $A = \begin{bmatrix} -7 & 3 \\ 5 & -2 \end{bmatrix}$ to solve the system $\begin{cases} -7x_1 + 3x_2 = 2 \\ 5x_1 - 2x_2 = 1 \end{cases}$.

Theorem 12. Suppose that A and B are invertible. Then (a) A^{-1} is invertible, and $(A^{-1})^{-1} = A$. (b) AB is invertible, and $(AB)^{-1} = B^{-1}A^{-1}$. (c) A^{T} is invertible, and $(A^{T})^{-1} = (A^{-1})^{T}$. Proof. Parts (b) and (c):

Algorithm for finding A^{-1} Write A and I side-by-side in an augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$ and row reduce. If A is invertible, then $\begin{bmatrix} A & I \end{bmatrix}$ will reduce to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$.

Example 13. Find the inverse of $A = \begin{bmatrix} 2 & 0 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ if it exists.

ADDITIONAL EXERCISES

(1) Compute the inverses of the invertible matrices in Example 7.

(3) For which values is k is the matrix

(2) Prove that if A, B, and C are invertible matrices, then $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$.

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & k \\ 1 & 4 & k^2 \end{bmatrix}$$
 invertible?

(4) Linear transformations may be used to encrypt messages in the following way. First assign a number to each letter.

Α	В	С	D	Е	F	G	Η	Ι	J	Κ	L	Μ
1	2	3	4	5	6	7	8	9	10	11	12	13
N	\cap	D	\cap	D	S	т	TT	V	XX7	X	V	7
1 1		Г	Q	n	Э		U	v	W	Λ	Y	L

Then we choose a 2×2 invertible matrix T with which to encrypt our message. The encryption process is the following:

- Break your message into two letter chunks.
- Write each pair of letters as a column vector of two numbers, where the top number corresponds to the first letter, and the bottom number corresponds to the second letter.
- Multiply each vector on the left by the matrix T; the outputs give the encrypted message.

For example, to encrypt the message "CODE" using the matrix $T = \begin{bmatrix} 6 & -1 \\ -1 & 1 \end{bmatrix}$, we break "CODE" into to chunks, "CO" and "DE", which are represented by the vectors $\begin{bmatrix} 3 \\ 15 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 5 \end{bmatrix}$.

Now multiply by T:

$$\begin{bmatrix} 6 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 15 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \end{bmatrix}, \begin{bmatrix} 6 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 19 \\ 1 \end{bmatrix},$$

and convert the outputs into the encrypted message: $\begin{bmatrix} 3\\12 \end{bmatrix} \rightarrow \text{``CL''}, \begin{bmatrix} 19\\1 \end{bmatrix} \rightarrow \text{``SA''}.$ Hence "CODE" becomes "CLSA".

Your task (should you choose to accept): Under a different linear transformation, "KEYS" is encrypted as "EFSF". Use this information to decipher the message "OJRCADEBIESB".