3.1 - Image and kernel of a linear transformation
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Recall that if $\vec{v}_{1}, \ldots, \vec{v}_{m}$ are vectors and a_{1}, \ldots, a_{m} are scalars, then the linear combination of these vectors with these scalars as coefficients is

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{m} \vec{v}_{m} .
$$

Definition 1. Let $\vec{v}_{1}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. The set of all linear combinations of these vectors is called their span, for which we write $\operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{m}\right)$.

Example 2.

(i) Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. What is $\operatorname{span}\left(\vec{v}_{1}\right)$? Express the vector $\left[\begin{array}{l}5 \\ 0 \\ 0\end{array}\right]$ as a linear combination of \vec{v}_{1}.
(ii) Let $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. What is span $\left(\vec{v}_{1}, \vec{v}_{2}\right)$? Express $\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ as a linear combination of \vec{v}_{1}, \vec{v}_{2}.
(iii) What is the span of $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 0\end{array}\right]$. Write $\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ as a linear combination of these vectors.

Definition 3. The image of a function f is the set of all outputs of f. That is,

$$
\operatorname{im}(f)=\{f(x): x \in \operatorname{domain}(f)\} .
$$

Theorem 4. Let T be a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n} with associated matrix A. The image of T is the span of the columns of A.
Proof. We want to show that $\operatorname{im}(T)=\operatorname{span}($ columns of $A)$. In other words, we want to prove that $\vec{b} \in \operatorname{im}(T)$ if and only if $\vec{b} \in \operatorname{span}($ columns of $A)$.

Example 5. Describe the image of the linear transformation represented by the matrix A, when
(a) $A=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
(b) $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 0 & 0\end{array}\right]$
(c) $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$

Example 6. Is \vec{b} in the image of the linear transformation given by the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$? If so, express \vec{b} as a linear combination of the columns of A.

Theorem 7. The image of a linear transformation T (from \mathbb{R}^{m} to $\left.\mathbb{R}^{n}\right)$ has the following properties:
(a) The zero vector $\overrightarrow{0}$ in \mathbb{R}^{n} is in the image of T.
(b) The image of T is closed under addition: If \vec{b}_{1} and \vec{b}_{2} are in the image of T, then so is $\vec{v}_{1}+\vec{v}_{2}$.
(c) The image of T is closed under scalar multiplication: If \vec{v} is in the image of T, then so is $k \vec{v}$ for any scalar k.
Proof.

Example 8. Let A be an $n \times n$ matrix. Show that $\operatorname{im}\left(A^{2}\right)$ is a subset of $\operatorname{im}(A)$. That is, show that if $\vec{b} \in \operatorname{im}\left(A^{2}\right)$, then $\vec{b} \in \operatorname{im}(A)$.

Definition 9. The kernel (or null space) of a linear transformation T from \mathbb{R}^{m} to \mathbb{R}^{n} is the set of all solutions to the equation $T(\vec{x})=\overrightarrow{0}$. That is,

$$
\operatorname{ker}(T)=\operatorname{Nul}(T)=\left\{x \in \mathbb{R}^{m}: T(\vec{x})=\overrightarrow{0}\right\}
$$

Example 10. Find the kernel of the linear transformation $T(\vec{x})=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right] \vec{x}$.

Example 11. Describe the image and kernel of $\operatorname{proj}_{\vec{v}}(\vec{x})$ when $\vec{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Theorem 12. Let T be a linear transformation from \mathbb{R}^{m} to \mathbb{R}^{n}.
(a) The zero vector $\overrightarrow{0}$ in \mathbb{R}^{m} is in the kernel of T.
(b) The kernel of T is closed under addition.
(c) The kernel of T is closed under scalar multiplication.

Theorem 13.
(a) If A is an $n \times m$ matrix, then $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if $\operatorname{rank}(A)=m$.
(b) If A is an $n \times m$ matrix and $\operatorname{ker}(A)=\{\overrightarrow{0}\}$, then $m \leq n$. If $m>n$, then then $\operatorname{ker}(A)$ contains non-zero vectors.
(c) If A is a square matrix, then $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ if and only if A is invertible.

Proof.

Theorem 14. Let A be an $n \times n$ matrix. The following statements are equivalent. (If one statement is true, then all the statements are true; if one statement is false, then all are false.)
(a) A is invertible.
(b) The linear system $A \vec{x}=\vec{b}$ has a unique solution \vec{x} for every \vec{b} in \mathbb{R}^{n}.
(c) $\operatorname{rref}(A)=I_{n}$.
(d) $\operatorname{rank}(A)=n$.
(e) $\operatorname{im}(A)=\mathbb{R}^{n}$.
(f) $\operatorname{ker}(A)=\{\overrightarrow{0}\}$.

ADDITIONAL EXERCISES

(1) Prove Theorem 11.
(2) Give spanning sets for the image and the kernel of the matrix A when
(a) $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(b) $A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
(c) $\quad A=\left[\begin{array}{llllll}1 & 2 & 0 & 0 & 3 & 0 \\ 0 & 0 & 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$
(3) Suppose that A is a square matrix and $\operatorname{ker}\left(A^{2}\right)=\operatorname{ker}\left(A^{3}\right)$. Is it true that $\operatorname{ker}\left(A^{3}\right)=\operatorname{ker}\left(A^{4}\right)$?

