3.4 - Coordinates

University of Massachusetts Amherst
Math 235 - Spring 2014
Definition 1. Let $\mathfrak{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis of a subspace V of \mathbb{R}^{n}. Any vector \vec{v} in V can be written uniquely as a linear combination of the basis vectors:

$$
\vec{v}=a_{1} \vec{v}_{1}+\cdots+a_{n} \vec{v}_{n}
$$

The scalars a_{1}, \ldots, a_{n} are called the \mathfrak{B}-coordinates of \vec{v}, and we write

$$
[\vec{v}]_{\mathfrak{B}}=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right] .
$$

In other words, if A is the matrix whose columns are the basis vectors, then $[\vec{v}]_{\mathfrak{B}}$ is the solution to the equation $A \vec{x}=\vec{v}$

Theorem 2. If \mathfrak{B} is a basis of a subspace V of \mathbb{R}^{n}, then coordinates are linear:
(a) $[\vec{x}+\vec{y}]_{\mathfrak{B}}=[\vec{x}]_{\mathfrak{B}}+[\vec{y}]_{\mathfrak{B}}$
(b) $[k \vec{x}]_{\mathfrak{B}}=k[\vec{x}]_{\mathfrak{B}}$

Definition 3. Consider the linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{n} and a basis \mathfrak{B} of \mathbb{R}^{n}. The $n \times n$ matrix B that transforms $[\vec{x}]_{\mathfrak{B}}$ to $[T(\vec{x})]_{\mathfrak{B}}$ is called the \mathfrak{B}-matrix of T :

$$
B[\vec{x}]_{\mathfrak{B}}=[T(\vec{x})]_{\mathfrak{B}} .
$$

The matrix B is constructed as follows: if the basis vectors are $\mathfrak{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$, then

$$
B=\left[\begin{array}{llll}
{\left[T\left(\vec{v}_{1}\right)\right]_{\mathfrak{B}}} & {\left[T\left(\vec{v}_{2}\right)\right]_{\mathfrak{B}}} & \cdots & {\left[T\left(\vec{v}_{n}\right)\right]_{\mathfrak{B}}}
\end{array}\right]
$$

Example 4. Let L be the line in \mathbb{R}^{2} spanned by the vector $\left[\begin{array}{l}3 \\ 1\end{array}\right]$. Let T be the linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} that projects any vector \vec{x} orthogonally onto the line L. Compute $[T(\vec{x})]_{\mathfrak{B}}$ when $\vec{x}=\left[\begin{array}{l}10 \\ 10\end{array}\right]$ and $\mathfrak{B}=\left\{\left[\begin{array}{l}3 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 3\end{array}\right]\right\}$.
Theorem 5. Let T be a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n}, and let $\mathfrak{B}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ be a basis for \mathbb{R}^{n}. Let A be the matrix associated to T, let B be the \mathfrak{B}-matrix for T, and let S be the matrix whose columns are the vectors in \mathfrak{B}. Then $A=S B S^{-1}$.

Definition 6. Two $n \times n$ matrices A and B are similar if there exists an invertible matrix S such that $A=S B S^{-1}$.

Definition 7. Let \mathcal{O} be a set of objects. An equivalence relation on \mathcal{O} is a relationship between objects in \mathcal{O}, denoted by \sim, that is

- reflexive: if a is in \mathcal{O}, then $a \sim a$,
- symmetric: if a and b are in \mathcal{O} and $a \sim b$, then $b \sim a$,
- transitive: if a, b, and c are in \mathcal{O} and $a \sim b$ and $b \sim c$, then $a \sim c$.

Theorem 8. Similarity is an equivalence relation. That is,
(a) Every $n \times n$ matrix is similar to itself (reflexivity).
(b) If A is similar to B, then B is similar to A (symmetry).
(c) If A is similar to B and B is similar to C, then A is similar to C (transitivity).

