3.4 — Coordinates University of Massachusetts Amherst Math 235 — Spring 2014

Definition 1. Let $\mathfrak{B} = {\vec{v}_1, \ldots, \vec{v}_n}$ be a basis of a subspace V of \mathbb{R}^n . Any vector \vec{v} in V can be written uniquely as a linear combination of the basis vectors:

$$\vec{v} = a_1 \vec{v}_1 + \dots + a_n \vec{v}_n.$$

The scalars a_1, \ldots, a_n are called the \mathfrak{B} -coordinates of \vec{v} , and we write

$$[\vec{v}]_{\mathfrak{B}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$

In other words, if A is the matrix whose columns are the basis vectors, then $[\vec{v}]_{\mathfrak{B}}$ is the solution to the equation $A\vec{x} = \vec{v}$

Theorem 2. If \mathfrak{B} is a basis of a subspace V of \mathbb{R}^n , then coordinates are linear: (a) $[\vec{x} + \vec{y}]_{\mathfrak{B}} = [\vec{x}]_{\mathfrak{B}} + [\vec{y}]_{\mathfrak{B}}$ (b) $[k\vec{x}]_{\mathfrak{B}} = k[\vec{x}]_{\mathfrak{B}}$

Definition 3. Consider the linear transformation T from \mathbb{R}^n to \mathbb{R}^n and a basis \mathfrak{B} of \mathbb{R}^n . The $n \times n$ matrix B that transforms $[\vec{x}]_{\mathfrak{B}}$ to $[T(\vec{x})]_{\mathfrak{B}}$ is called the \mathfrak{B} -matrix of T:

$$B[\vec{x}]_{\mathfrak{B}} = [T(\vec{x})]_{\mathfrak{B}}$$

The matrix B is constructed as follows: if the basis vectors are $\mathfrak{B} = {\vec{v}_1, \ldots, \vec{v}_n}$, then

$$B = \left[[T(\vec{v}_1)]_{\mathfrak{B}} \quad [T(\vec{v}_2)]_{\mathfrak{B}} \quad \cdots \quad [T(\vec{v}_n)]_{\mathfrak{B}} \right]$$

Example 4. Let *L* be the line in \mathbb{R}^2 spanned by the vector $\begin{bmatrix} 3\\1 \end{bmatrix}$. Let *T* be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that projects any vector \vec{x} orthogonally onto the line *L*. Compute $[T(\vec{x})]_{\mathfrak{B}}$ when $\vec{x} = \begin{bmatrix} 10\\10 \end{bmatrix}$ and $\mathfrak{B} = \left\{ \begin{bmatrix} 3\\1 \end{bmatrix}, \begin{bmatrix} -1\\3 \end{bmatrix} \right\}$.

Theorem 5. Let T be a linear transformation from \mathbb{R}^n to \mathbb{R}^n , and let $\mathfrak{B} = \{\vec{v}_1, \ldots, \vec{v}_n\}$ be a basis for \mathbb{R}^n . Let A be the matrix associated to T, let B be the \mathfrak{B} -matrix for T, and let S be the matrix whose columns are the vectors in \mathfrak{B} . Then $A = SBS^{-1}$.

Definition 6. Two $n \times n$ matrices A and B are *similar* if there exists an invertible matrix S such that $A = SBS^{-1}$.

Definition 7. Let \mathcal{O} be a set of objects. An *equivalence relation* on \mathcal{O} is a relationship between objects in \mathcal{O} , denoted by \sim , that is

- reflexive: if a is in \mathcal{O} , then $a \sim a$,
- symmetric: if a and b are in \mathcal{O} and $a \sim b$, then $b \sim a$,
- transitive: if a, b, and c are in \mathcal{O} and $a \sim b$ and $b \sim c$, then $a \sim c$.

Theorem 8. Similarity is an equivalence relation. That is,

(a) Every $n \times n$ matrix is similar to itself (reflexivity).

- (b) If A is similar to B, then B is similar to A (symmetry).
- (c) If A is similar to B and B is similar to C, then A is similar to C (transitivity).