4.1 - Vector spaces
University of Massachusetts Amherst
Math 235 - Spring 2014

Definition 1. A vector space (or linear space) V is a set with two operations: addition and scalar multiplication. For any f and g in the vector space and for any scalars j and k, these operations satisfy the following rules:
(1) Addition is associative: $(f+g)+h=f+(g+h)$.
(2) Addition is commutative: $f+g=g+h$.
(3) Unique additive identity: " 0 " that satisfies $f+0=f$.
(4) Unique additive inverse: " $-f$ " that satisfies $f+(-f)=0$.
(5) Distributive law for elements of the vector space: $(j+k) f=j f+k f$.
(6) Distributive law for scalar multiplication: $k(f+g)=k f+k g$.
(7) Scalar multiplication is associative: $(j k) f=j(k f)$.
(8) Multiplicative identity: $1 f=f$.

Example 2. Examples of vector spaces:
(1) \mathbb{R}^{n}
(2) Functions from \mathbb{R} to \mathbb{R}, denoted by $F(\mathbb{R}, \mathbb{R})$
(a) Differentiable functions
(b) Polynomials
(c) Polynomials of degree $\leq n$
(d) Linear equations of n variables
(3) $m \times n$ matrices, denoted by $\mathbb{R}^{m \times n}$
(4) Infinite sequences of real numbers
(5) Complex numbers \mathbb{C} : all numbers of the form $a+b i$, where a and b are real numbers, and i is a number that satisfies $i^{2}=-1$

Definition 3. A subset W of a linear space V is called a subspace of V if
(a) W contains the additive identity " 0 " of V.
(b) W is closed under addition.
(c) W is closed under scalar multiplication.

Example 4. Show that the differentiable functions are a subspace of $F(\mathbb{R}, \mathbb{R})$.
Example 5. Show that the set of all polynomials of degree at most 2 are a subspace of $F(\mathbb{R}, \mathbb{R})$.
Example 6. Do the matrices that commute with $\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$ form a subspace of $\mathbb{R}^{2 \times 2}$?
Example 7. Does the set of non-invertible 2×2 matrices form a subspace of $\mathbb{R}^{2 \times 2}$?
Definition 8. For any vector space V, we have notions of span, linear independence, basis, dimension ${ }^{*}$, and coordinates. ${ }^{*}$ A vector space may be infinite dimensional.
Example 9. Find a basis for and determine the dimension of $\mathbb{R}^{2 \times 2}$.
Example 10. Find a basis for the set of all matrices that commute with $\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]$.
Example 11. What are the dimensions of the spaces listed in Example 10?

