4.1 — Vector spaces University of Massachusetts Amherst Math 235 — Spring 2014

Definition 1. A vector space (or linear space) V is a set with two operations: addition and scalar multiplication. For any f and g in the vector space and for any scalars j and k, these operations satisfy the following rules:

- (1) Addition is associative: (f + g) + h = f + (g + h).
- (2) Addition is commutative: f + g = g + h.
- (3) Unique additive identity: "0" that satisfies f + 0 = f.
- (4) Unique additive inverse: "-f" that satisfies f + (-f) = 0.
- (5) Distributive law for elements of the vector space: (j + k)f = jf + kf.
- (6) Distributive law for scalar multiplication: k(f+g) = kf + kg.
- (7) Scalar multiplication is associative: (jk)f = j(kf).
- (8) Multiplicative identity: 1f = f.

Example 2. Examples of vector spaces:

- (1) \mathbb{R}^n
- (2) Functions from \mathbb{R} to \mathbb{R} , denoted by $F(\mathbb{R}, \mathbb{R})$
 - (a) Differentiable functions
 - (b) Polynomials
 - (c) Polynomials of degree $\leq n$
 - (d) Linear equations of n variables
- (3) $m \times n$ matrices, denoted by $\mathbb{R}^{m \times n}$
- (4) Infinite sequences of real numbers
- (5) Complex numbers \mathbb{C} : all numbers of the form a + bi, where a and b are real numbers, and i is a number that satisfies $i^2 = -1$

Definition 3. A subset W of a linear space V is called a *subspace* of V if

- (a) W contains the additive identity "0" of V.
- (b) W is closed under addition.
- (c) W is closed under scalar multiplication.

Example 4. Show that the differentiable functions are a subspace of $F(\mathbb{R},\mathbb{R})$.

Example 5. Show that the set of all polynomials of degree at most 2 are a subspace of $F(\mathbb{R},\mathbb{R})$.

Example 6. Do the matrices that commute with $\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$ form a subspace of $\mathbb{R}^{2 \times 2}$?

Example 7. Does the set of non-invertible 2×2 matrices form a subspace of $\mathbb{R}^{2 \times 2}$?

Definition 8. For any vector space V, we have notions of *span*, *linear independence*, *basis*, *dimension*^{*}, and *coordinates*. *A vector space may be infinite dimensional.

Example 9. Find a basis for and determine the dimension of $\mathbb{R}^{2\times 2}$.

Example 10. Find a basis for the set of all matrices that commute with $\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$.

Example 11. What are the dimensions of the spaces listed in Example 10?