6.1 - Determinants<br>University of Massachusetts Amherst<br>Math 235 - Spring 2014

The determinant of a square matrix $A$ is a particular number that can be computed from the entries of the matrix. If $A$ is the coefficient matrix for a system of linear equations, then the determinant of $A$ can be used to determine whether the solutions to the system are unique. If $A$ represents a linear transformation $T$, then the determinant can be used to determine whether $T$ is invertible.
For any square matrix $A=[\quad]$, the determinant of $A$ is denoted by $\operatorname{det}(A), \operatorname{det}[\quad$, or $\mid$.
Example 1. What is $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ ?
Definition 2. The ( $i, j$ )-cofactor of an $n \times n$ matrix $A$, denoted $A_{i j}$, is the matrix $A$ with the $i$-th row and $j$-th column omitted. The dimension of any cofactor matrix is:

Example 3. Recall that for two vectors $\vec{v}=\langle a, b, c\rangle$ and $\vec{u}=\langle d, e, f\rangle$, their cross product is the determinant of the $3 \times 3$ matrix
$\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ a & b & c \\ d & e & f\end{array}\right|=$
Theorem 4. The determinant of an $n \times n$ matrix $A$ can be computed by a cofactor expansion across any row or down any column.
Example 5. Compute the determinants of the following matrices.
 the first row)
$\left|\begin{array}{ccccc}3 & -7 & 8 & 9 & -6 \\ 0 & 2 & -5 & 7 & 3 \\ 0 & 0 & 1 & 5 & 0 \\ 0 & 0 & 2 & 4 & -1 \\ 0 & 0 & 0 & -2 & 0\end{array}\right|=3\left|\begin{array}{cccc}2 & -5 & 7 & 3 \\ 0 & 1 & 5 & 0 \\ 0 & 2 & 4 & -1 \\ 0 & 0 & -2 & 0\end{array}\right|=3 \cdot 2\left|\begin{array}{ccc}1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0\end{array}\right|=3 \cdot 2 \cdot 2\left|\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right|=12$. (expand down the first column, then the second column, then the third row)
Theorem 6. The determinant of a triangular matrix is the product of elements on its diagonal.
Example 7. $\left|\begin{array}{cccc}1 & -4 & 3 & 4 \\ 0 & 3 & -4 & -2 \\ 0 & 0 & -6 & 2 \\ 0 & 0 & 0 & 1\end{array}\right|=1 \cdot 3 \cdot(-6) \cdot 1=-18$.

