7.2 - Eigenvalues

University of Massachusetts Amherst
Math 235 - Spring 2014
Definition 1. Let A be an $n \times n$ matrix. A nonzero vector \vec{v} is an eigenvector of A if

$$
A \vec{v}=\lambda \vec{v} \quad \text { for some constant } \lambda .
$$

That is, $A \vec{v}$ is a scalar multiple of \vec{v}. The constant λ is the eigenvalue associated to \vec{v}.
Example 2. Let $A=\left[\begin{array}{ll}1 & 6 \\ 5 & 2\end{array}\right], \vec{u}=\left[\begin{array}{c}6 \\ -5\end{array}\right]$, and $\vec{v}=\left[\begin{array}{c}3 \\ -2\end{array}\right]$. Is \vec{u} or \vec{v} an eigen vector of A ? ANSWER:

$$
A \vec{u}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{c}
6 \\
-5
\end{array}\right]=\left[\begin{array}{c}
-24 \\
20
\end{array}\right]=-4\left[\begin{array}{c}
6 \\
-5
\end{array}\right]=-4 \vec{u} .
$$

So \vec{u} is an eigenvector of A for the eigenvalue -4 .

$$
A \vec{v}=\left[\begin{array}{ll}
1 & 6 \\
5 & 2
\end{array}\right]\left[\begin{array}{c}
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-9 \\
11
\end{array}\right]
$$

is not a multiple of \vec{v}, so \vec{v} is not an eigenvector of A.
Definition 3. The determinant $\operatorname{det}(A-\lambda I)$ is a polynomial in λ. This polynomial is called the characteristic equation of A.

Theorem 4. Let A be an $n \times n$ matrix. The number λ is an eigenvalue of A if and only if

$$
\operatorname{det}(A-\lambda I)=0
$$

In other words, the eigenvalues of A are the roots of its characteristic polynomial.
Example 5. Find the eigenvalues of $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2\end{array}\right]$.
answer: For A :

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]-\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 2 \\
4 & 3-\lambda
\end{array}\right] \\
& =(1-\lambda)(3-\lambda)-8 \\
& =3-4 \lambda+\lambda^{2}-8 \\
& =\lambda^{2}-4 \lambda-5 \\
& =(\lambda-5)(\lambda+1)
\end{aligned}
$$

hence the eigenvalues of $\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ are 5 and -1 .
For B :

$$
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
3 & -2 & 5 \\
1 & 0 & 7 \\
0 & 0 & 2
\end{array}\right]-\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

$$
\begin{aligned}
& =\operatorname{det}\left(\left[\begin{array}{ccc}
3 & -2 & 5 \\
1 & 0 & 7 \\
0 & 0 & 2
\end{array}\right]-\left[\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{ccc}
3-\lambda & -2 & 5 \\
1 & -\lambda & 7 \\
0 & 0 & 2-\lambda
\end{array}\right] \\
& =(2-\lambda) \operatorname{det}\left[\begin{array}{cc}
3-\lambda & -2 \\
1 & -\lambda
\end{array}\right] \\
& =(2-\lambda)(-\lambda(3-\lambda)+2) \\
& =(2-\lambda)\left(\lambda^{2}-3 \lambda+2\right) \\
& =(2-\lambda)(\lambda-2)(\lambda-1)
\end{aligned}
$$

hence the eigenvalues of B are 2,2 , and 1 .
Theorem 6. The eigenvalues of a triangular matrix are the elements on its diagonal.
Example 7. Compute the characteristic polynomial and identify the eigenvalues of the identity matrix I_{n}.

Example 8. Compute the characteristic polynomial and identify the eigenvalues of the matrix $\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$
ANSWER: The characteristic polynomial of this matrix is

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
0 & 2 & 3 & 4 & 5 \\
0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 2 & 3 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]-\lambda\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left[\begin{array}{ccccc}
1-\lambda & 2 & 3 & 4 & 5 \\
0 & 2-\lambda & 3 & 4 & 5 \\
0 & 0 & 1-\lambda & 2 & 3 \\
0 & 0 & 0 & 2-\lambda & 3 \\
0 & 0 & 0 & 0 & 1-\lambda
\end{array}\right] \\
& =(1-\lambda)^{3}(2-\lambda)^{2} .
\end{aligned}
$$

The eigenvalues are $1,1,1,2$, and 2 . Using the next definition, we also say that the eigenvalues are 1 (with multiplicity 3) and 2 (with multiplicity 2).
Definition 9. The multiplicity of an eigenvalue λ_{0} of A is the power to which $\left(\lambda_{0}-\lambda\right)$ divides the characteristic polynomial of A.

Theorem 10. An $n \times n$ matrix has at most n real eigenvalues (counted with multiplicity). If n is odd, then there must be at least 1 real eigenvalue. If n is even, then there may not be any real eigenvalues.

Theorem 11. Complex eigenvalues come in pairs: if $\lambda=a+b i$ is an eigenvalue of A, then $a-b i$ is also an eigenvalue of A.

Example 12. What are the all possible arrangements of eigenvalues of 2×2 matrices?

Example 13. Find the eigenvalues of $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
ANSWER: The characteristic polynomial of a 2×2 matrix has degree 2 , so it either has two real roots/eigenvalues, or one pair of complex roots/eigenvalues. If the eigenvalues are real, then there is either one unique eigenvalue with multiplicity 2 , or two distinct eigenvalues.

Theorem 14. The determinant of a matrix is equal to the product of its eigenvalues. The trace of a matrix is equal to the sum of its eigenvalues. That is, if A is an $n \times n$ matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then

$$
\begin{aligned}
\operatorname{det}(A) & =\lambda_{1} \lambda_{2} \cdots \lambda_{n}, \\
\operatorname{tr}(A) & =\lambda_{1}+\lambda_{2} \cdots+\lambda_{n} .
\end{aligned}
$$

Example 15. Verify this theorem for general 2×2 matrices.
ANSWER: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. Then $\operatorname{tr}(A)=a+d$ and $\operatorname{det}(A)=a d-b c$. Moreover, the characteristic polynomial for this matrix is

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) & =\operatorname{det}\left[\begin{array}{cc}
a-\lambda & b \\
c & d-\lambda
\end{array}\right] \\
& =(a-\lambda)(d-\lambda)-b c \\
& =\lambda^{2}-(a+d) \lambda+(a d-b c) \\
& =\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A) .
\end{aligned}
$$

On the other hand, if the eigenvalues of A are λ_{1} and λ_{2}, then the characteristic polynomial of A is

$$
\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)=\lambda^{2}-\left(\lambda_{1}+\lambda_{2}\right) \lambda+\lambda_{1} \lambda_{2} .
$$

Combining these two equations, we see that $\operatorname{tr}(A)=\lambda_{1}+\lambda_{2}$ and $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$.

