7.2 — Eigenvalues University of Massachusetts Amherst Math 235 — Spring 2014

Definition 1. Let A be an $n \times n$ matrix. A nonzero vector \vec{v} is an *eigenvector* of A if $A\vec{v} = \lambda \vec{v}$ for some constant λ .

That is, $A\vec{v}$ is a scalar multiple of \vec{v} . The constant λ is the *eigenvalue* associated to \vec{v} .

Example 2. Let
$$A = \begin{bmatrix} 1 & 6 \\ 5 & 2 \end{bmatrix}$$
, $\vec{u} = \begin{bmatrix} 6 \\ -5 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Is \vec{u} or \vec{v} an eigen vector of A ?
ANSWER:
 $\begin{bmatrix} 1 & 6 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \end{bmatrix} \begin{bmatrix} -24 \end{bmatrix}$

$$A\vec{u} = \begin{bmatrix} 1 & 6\\ 5 & 2 \end{bmatrix} \begin{bmatrix} 6\\ -5 \end{bmatrix} = \begin{bmatrix} -24\\ 20 \end{bmatrix} = -4 \begin{bmatrix} 6\\ -5 \end{bmatrix} = -4\vec{u}.$$

So \vec{u} is an eigenvector of A for the eigenvalue -4.

$$A\vec{v} = \begin{bmatrix} 1 & 6\\ 5 & 2 \end{bmatrix} \begin{bmatrix} 3\\ -2 \end{bmatrix} = \begin{bmatrix} -9\\ 11 \end{bmatrix}$$

is not a multiple of \vec{v} , so \vec{v} is not an eigenvector of A.

Definition 3. The determinant $det(A - \lambda I)$ is a polynomial in λ . This polynomial is called the *characteristic equation* of A.

Theorem 4. Let A be an $n \times n$ matrix. The number λ is an eigenvalue of A if and only if

$$\det(A - \lambda I) = 0.$$

In other words, the eigenvalues of A are the roots of its characteristic polynomial.

Example 5. Find the eigenvalues of $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2 \end{bmatrix}$.

ANSWER: For A:

$$det(A - \lambda I) = det \left(\begin{bmatrix} 1 & 2\\ 4 & 3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} 1 & 2\\ 4 & 3 \end{bmatrix} - \begin{bmatrix} \lambda & 0\\ 0 & \lambda \end{bmatrix} \right)$$
$$= det \begin{bmatrix} 1 - \lambda & 2\\ 4 & 3 - \lambda \end{bmatrix}$$
$$= (1 - \lambda)(3 - \lambda) - 8$$
$$= 3 - 4\lambda + \lambda^2 - 8$$
$$= \lambda^2 - 4\lambda - 5$$
$$= (\lambda - 5)(\lambda + 1),$$

hence the eigenvalues of $\begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$ are 5 and -1. For *B*:

$$\det(B - \lambda I) = \det\left(\begin{bmatrix}3 & -2 & 5\\1 & 0 & 7\\0 & 0 & 2\end{bmatrix} - \lambda \begin{bmatrix}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{bmatrix}\right)$$

$$= \det \left(\begin{bmatrix} 3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix} \right)$$
$$= \det \begin{bmatrix} 3 - \lambda & -2 & 5 \\ 1 & -\lambda & 7 \\ 0 & 0 & 2 - \lambda \end{bmatrix}$$
$$= (2 - \lambda) \det \begin{bmatrix} 3 - \lambda & -2 \\ 1 & -\lambda \end{bmatrix}$$
$$= (2 - \lambda) (-\lambda(3 - \lambda) + 2)$$
$$= (2 - \lambda) (\lambda^2 - 3\lambda + 2)$$
$$= (2 - \lambda) (\lambda - 2) (\lambda - 1)$$

hence the eigenvalues of B are 2, 2, and 1.

Theorem 6. The eigenvalues of a triangular matrix are the elements on its diagonal.

Example 7. Compute the characteristic polynomial and identify the eigenvalues of the identity matrix I_n .

Example 8. Compute the characteristic polynomial and identify the eigenvalues of the matrix $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 0 \end{bmatrix}$

21 3 4 54 5 $0 \ 2$ 3 $0 \ 0 \ 1$ $2 \ 3$ 0 0 2 3 0 1 0 0 0 0

ANSWER: The characteristic polynomial of this matrix is

$$\det(A - \lambda I) = \det\left(\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 3 & 4 & 5 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 2 & 3 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \right)$$
$$= \det\left[\begin{bmatrix} 1 - \lambda & 2 & 3 & 4 & 5 \\ 0 & 2 - \lambda & 3 & 4 & 5 \\ 0 & 0 & 1 - \lambda & 2 & 3 \\ 0 & 0 & 0 & 2 - \lambda & 3 \\ 0 & 0 & 0 & 0 & 1 - \lambda \end{bmatrix} \right]$$
$$= (1 - \lambda)^3 (2 - \lambda)^2.$$

The eigenvalues are 1, 1, 1, 2, and 2. Using the next definition, we also say that the eigenvalues are 1 (with multiplicity 3) and 2 (with multiplicity 2).

Definition 9. The *multiplicity* of an eigenvalue λ_0 of A is the power to which $(\lambda_0 - \lambda)$ divides the characteristic polynomial of A.

Theorem 10. An $n \times n$ matrix has at most n real eigenvalues (counted with multiplicity). If n is odd, then there must be at least 1 real eigenvalue. If n is even, then there may not be any real eigenvalues.

Theorem 11. Complex eigenvalues come in pairs: if $\lambda = a + bi$ is an eigenvalue of A, then a - bi is also an eigenvalue of A.

Example 12. What are the all possible arrangements of eigenvalues of 2×2 matrices?

Example 13. Find the eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

ANSWER: The characteristic polynomial of a 2×2 matrix has degree 2, so it either has two real roots/eigenvalues, or one pair of complex roots/eigenvalues. If the eigenvalues are real, then there is either one unique eigenvalue with multiplicity 2, or two distinct eigenvalues.

Theorem 14. The determinant of a matrix is equal to the product of its eigenvalues. The trace of a matrix is equal to the sum of its eigenvalues. That is, if A is an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, then

$$det(A) = \lambda_1 \lambda_2 \cdots \lambda_n,$$

$$tr(A) = \lambda_1 + \lambda_2 \cdots + \lambda_n$$

Example 15. Verify this theorem for general 2×2 matrices.

ANSWER: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then tr(A) = a + d and det(A) = ad - bc. Moreover, the characteristic polynomial for this matrix is

$$\det \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \det \begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix}$$
$$= (a - \lambda)(d - \lambda) - bc$$
$$= \lambda^2 - (a + d)\lambda + (ad - bc)$$
$$= \lambda^2 - \operatorname{tr}(A)\lambda + \det(A).$$

On the other hand, if the eigenvalues of A are λ_1 and λ_2 , then the characteristic polynomial of A is

$$(\lambda - \lambda_1)(\lambda - \lambda_2) = \lambda^2 - (\lambda_1 + \lambda_2)\lambda + \lambda_1\lambda_2.$$

Combining these two equations, we see that $tr(A) = \lambda_1 + \lambda_2$ and $det(A) = \lambda_1 \lambda_2$.