7.4 - Diagonalization
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Definition 1. An $n \times n$ matrix A is diagonalizable if A is similar to some diagonal matrix D. That is, there exists an $n \times n$ invertible matrix S such that $S^{-1} A S$ is diagonal.
Theorem 2. Let T be a linear transformation where $T(\vec{x})=A \vec{x}$ for some $n \times n$ matrix A. Suppose $\mathfrak{D}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is an eigenbasis for A, with $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then the \mathfrak{D}-matrix of T is

$$
D=S^{-1} A S=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right] \text {, where } S=\left[\begin{array}{ccc}
\mid & & \mid \\
\vec{v}_{1} & \cdots & \vec{v}_{n} \\
\mid & & \mid
\end{array}\right] \text {. }
$$

Theorem 3.
(a) A is diagonalizable if and only if there exists an eigenbasis for A.
(b) If A has n distinct eigenvalues, then A is diagonalizable.

Theorem 4. To determine if an $n \times n$ matrix is A is diagonalizable:
(a) Find the eigenvalues of A.
(b) For each eigenvalue λ, determine the dimension of the eigenspace E_{λ}.
(c) The matrix A is diagonalizable if and only if the dimensions of the eigenspaces add up to n.

Example 5. Diagonalize the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ if possible.
ANSWER: A is already diagonal, so we don't have to to anything, but let's go through the steps anyway.

First we need to determine the eigenvalues. This is a diagonal matrix, so its eigenvalues are the numbers on the diagonal: 1 (with algebraic multiplicity 1) and 0 (with algebraic multiplicity 2).

Now we need to compute the eigenspaces:

$$
\begin{aligned}
& E_{1}=\operatorname{ker}(A-I)=\operatorname{ker}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \\
& E_{0}=\operatorname{ker}(A)=\operatorname{ker}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

We see that $\operatorname{dim} E_{1}=1$ and $\operatorname{dim} E_{0}=2$. The dimensions add up to 3 , so an eigenbasis exists, and the matrix is diagonalizable. Specifically, the eigenbasis is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$ (just take the vectors from the eigenspaces), and the diagonal matrix is $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
Example 6. For which values is the matrix $A=\left[\begin{array}{lll}1 & a & b \\ 0 & 0 & c \\ 0 & 0 & 1\end{array}\right]$ diagonalizable?
ANSWER: A is upper triangular, so its eigenvalues are on the diagonal: 0 (with algebraic multiplicity 1) and 1 (with algebraic multiplicity 2). Recall from Theorem 5 of the 7.3 notes that $1 \leq$ geometric multiplicity of $\lambda \leq$ algebraic multiplicity of λ.

The geometric multiplicity of λ is the dimension of the eigenspace E_{λ}. So for the eigenvalue 0 , we know that its geometric multiplicity must be 1 . We can verify this by computing the eigenspace:

$$
E_{0}=\operatorname{ker}(A)=\operatorname{ker}\left[\begin{array}{lll}
1 & a & b \\
0 & 0 & c \\
0 & 0 & 1
\end{array}\right]=\operatorname{ker}\left[\begin{array}{lll}
1 & a & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
-a \\
1 \\
0
\end{array}\right]\right\} .
$$

For the matrix to be diagonalizable, we need the dimensions of the eigenspaces to add to 3 , so we need the dimension of the eigenspace E_{1} to be 2 . Let's compute this eigenspace.

$$
E_{1}=\operatorname{ker}(A-I)=\operatorname{ker}\left[\begin{array}{ccc}
0 & a & b \\
0 & -1 & c \\
0 & 0 & 0
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ccc}
0 & 1 & -c \\
0 & a & b \\
0 & 0 & 0
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ccc}
0 & 1 & -c \\
0 & 0 & b+a c \\
0 & 0 & 0
\end{array}\right] .
$$

The dimension of the kernel is 2 if and only if the matrix has one pivot, and the matrix has exactly one pivot only if $b+a c=0$. Thus A is diagonalizable if and only if $b+a c=0$.

Example 7. Let $A=\left[\begin{array}{cc}\frac{1}{2} & \frac{3}{4} \\ \frac{1}{2} & \frac{1}{4}\end{array}\right]$. Compute $\lim _{t \rightarrow \infty} A^{t}$.
ANSWER: This question is nearly impossible to do by direct computation. The key is to diagonalize A, that is, write $A=S D S^{-1}$ for some invertible matrix S and diagonal matrix D.

To diagonalize A, we first compute its eigenvalues. The characteristic polynomial of a 2×2 matrix is

$$
\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-\frac{3}{4} \lambda-\frac{1}{4} .
$$

To find the eigenvalues, we set this polynomial equal to 0 :

$$
\begin{aligned}
\lambda^{2}-\frac{3}{4} \lambda-\frac{1}{4} & =0 \\
4 \lambda^{2}-3 \lambda-1 & =0 \\
(4 \lambda+1)(\lambda-1) & =0,
\end{aligned}
$$

so the eigenvalues are $-1 / 4$ and 1 . Thus

$$
D=\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{4}
\end{array}\right] \text {. }
$$

To get S, we need to compute the eigenspaces:

$$
\begin{aligned}
E_{1} & =\operatorname{ker}(A-I)=\operatorname{ker}\left[\begin{array}{cc}
-\frac{1}{2} & \frac{3}{4} \\
\frac{1}{2} & -\frac{3}{4}
\end{array}\right]=\operatorname{ker}\left[\begin{array}{cc}
1 & -\frac{3}{2} \\
0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
3 / 2 \\
1
\end{array}\right]\right\} \\
E_{-1 / 4} & =\operatorname{ker}\left(A+\frac{1}{4} I\right)=\operatorname{ker}\left[\begin{array}{cc}
\frac{3}{4} & \frac{3}{4} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right]=\operatorname{ker}\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

So let's take $S=\left[\begin{array}{cc}3 / 2 & -1 \\ 1 & 1\end{array}\right]$. Now

$$
A=S D S^{-1}=\frac{2}{5}\left[\begin{array}{cc}
3 / 2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 3 / 2
\end{array}\right] .
$$

There are two facts we need to finish this problem. First, $\left(S D S^{-1}\right)^{t}=S D^{t} S^{-1}$ (this property appeared in one of the previous homework assignments). Secondly, $D^{t}=\left[\begin{array}{cc}1^{t} & 0 \\ 0 & \left(-\frac{1}{4}\right)^{t}\end{array}\right]$ (this is a property of diagonal matrices from Chapter 2). Using these properties, we get

$$
\lim _{t \rightarrow \infty} A^{t}=\lim _{t \rightarrow \infty} S D^{t} S^{-1}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow \infty} \frac{2}{5}\left[\begin{array}{cc}
3 / 2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \left(-\frac{1}{4}\right)^{t}
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 3 / 2
\end{array}\right] \\
& =\frac{2}{5}\left[\begin{array}{cc}
3 / 2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
-1 & 3 / 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
3 / 5 & 3 / 5 \\
2 / 5 & 2 / 5
\end{array}\right] .
\end{aligned}
$$

Definition 8. Let V be a vector space, and let T be a linear transformation from V to V. A scalar λ is an eigenvalue for T if there exists an nonzero f in V such that $T(f)=\lambda f$. Such an f is called an eigenfunction (or eigenmatrix, etc.) if V is a space of functions (or matrices, etc.). In general, we still call f an eigenvector though f may not be a vector.

If V is finite dimensional, then a basis \mathfrak{D} of V of eigenvectors of T is an eigenbasis of $T . T$ is diagonalizable if the matrix for T with respect to some basis is diagonal, and T is diagonalizable if and only if T has an eigenbasis.

Example 9. Consider the map $T(A)=A^{T}$ from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$. Is the transformation T diagonalizable? If so, find an eigenbasis for T.

ANSWER: We will do this problem by expressing T as a matrix, and then computing the eigenvalues and eigenvectors of this matrix. We follow the notation from Section 4.3.

First we need to pick a basis for the set of 2×2 matrices. It doesn't matter which basis we choose, so let's take

$$
\mathfrak{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\} .
$$

The \mathfrak{B}-matrix for T is

$$
B=\left[\begin{array}{lll}
{\left[T\left(f_{1}\right)\right]_{\mathfrak{B}}} & \cdots & {\left[T\left(f_{n}\right)\right]_{\mathfrak{B}}}
\end{array}\right]
$$

where f_{1}, f_{2}, f_{3}, and f_{4} are the matrices in our basis. You may need to review the definition of coordinates from Section 3.4.

Now we compute B :

$$
\begin{aligned}
& T\left(f_{1}\right)=T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]^{T}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \\
& T\left(f_{2}\right)=T\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]^{T}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
& T\left(f_{3}\right)=T\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]^{T}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \\
& T\left(f_{4}\right)=T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]^{T}=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],
\end{aligned}
$$

hence

$$
\left[T\left(f_{1}\right)\right]_{\mathfrak{B}}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[T\left(f_{2}\right)\right]_{\mathfrak{B}}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad\left[T\left(f_{3}\right)\right]_{\mathfrak{B}}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[T\left(f_{4}\right)\right]_{\mathfrak{B}}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], \quad \text { and }
$$

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The eigenvalues of T are the eigenvalues of B, so we compute

$$
\operatorname{det}(B-\lambda I)=\operatorname{det}\left[\begin{array}{cccc}
1-\lambda & 0 & 0 & 0 \\
0 & -\lambda & 1 & 0 \\
0 & 1 & -\lambda & 0 \\
0 & 0 & 0 & 1-\lambda
\end{array}\right]=(\lambda-1)^{3}(\lambda+1)
$$

Hence the eigenvalues of B are 1 (with algebraic multiplicity 3) and -1 (with algebraic multiplicity 1).

The eigenspaces are

$$
\begin{aligned}
& E_{1}=\operatorname{ker}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{ker}\left[\begin{array}{cccc}
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]\right\}, \\
& E_{-1}=\operatorname{ker}\left[\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]=\operatorname{ker}\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
0 \\
-1 \\
1 \\
0
\end{array}\right]\right\}
\end{aligned}
$$

The dimensions of the eigenspaces add up to 4 , so T is diagonalizable. That is, T is given by the diagonal matrix $D=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]$, and you may verify that $D=S^{-1} B S$ for the matrix $S=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$ (the columns of S are the eigenvectors of B).

These four vectors $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]\right\}$ correspond to the eigenmatrices:

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

and you may verify that

$$
\begin{aligned}
& T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\right)=1 \cdot\left[\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right], \quad T\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right)=1 \cdot\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad T\left(\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right)=1 \cdot\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& T\left(\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\right)=-1 \cdot\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

Example 10. Consider the linear transformation $T(f(x))=f(2 x-1)$ from P_{2} to P_{2}. Is T diagonalizable? If so, find an eigenbasis \mathfrak{D} and the \mathfrak{D}-matrix D of T.

ANSWER: We proceed follow the same steps as in the previous problem, this time with the basis $\mathfrak{B}=\left\{1, x, x^{2}\right\}$. In this basis, the \mathfrak{B}-matrix is $B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4\end{array}\right] . B$ has three distinct eigenvalues,
so it is diagonalizable, and the diagonal matrix is $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$ since the eigenvalues are 1,2 , and 4. If you compute the eigenspaces, you will find that

$$
E_{1}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} \quad E_{2}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\} \quad E_{4}=\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]\right\}
$$

which correspond to the eigenfunctions $1, x-1$, and $x^{2}-2 x+1$. We verify that these are indeed eigenfunctions for their corresponding eigenvalues.

$$
\begin{aligned}
& T(1)=1=1 \cdot 1 . \\
& T(x-1)=(2 x-1)-1=2 \cdot(x-1) . \\
& T\left(x^{2}-2 x+1\right)=(2 x-1)^{2}-2(2 x-1)+1=4 x^{2}-8 x+4=4 \cdot\left(x^{2}-2 x+1\right) .
\end{aligned}
$$

Example 11. Let V be the space of all infinite sequences of real numbers, and let T be the shift map:

$$
T\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right) .
$$

Find all eigenvalues and eigensequences of T.
ANSWER: A sequence ($x_{0}, x_{1}, x_{2}, \ldots$) is an eigensequence for the eigenvalue λ if and only if

$$
T\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\lambda\left(x_{0}, x_{1}, x_{2}, \ldots\right)
$$

On the other hand, by the definition of T, we have

$$
T\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right) .
$$

Thus to be an eigensequence, we have

$$
\lambda\left(x_{0}, x_{1}, x_{2}, \ldots\right)=\left(x_{1}, x_{2}, \ldots\right),
$$

which implies that

$$
\begin{aligned}
& x_{1}=\lambda x_{0} \\
& x_{2}=\lambda x_{1}=\lambda^{2} x_{0} \\
& x_{3}=\lambda x_{2}=\lambda^{3} x_{0}
\end{aligned}
$$

hence an eigensequnce has the form $\left(x_{0}, \lambda x_{0}, \lambda^{2} x_{0}, \ldots\right)$. Moreover, we are free to choose λ and x_{0}. So, every real number is an eigenvalue for T, and for each eigenvalue λ, the corresponding eigenspace is

$$
E_{\lambda}=\operatorname{span}\left\{\left(1, \lambda, \lambda^{2}, \ldots\right)\right\} .
$$

