7.5 - Complex eigenvalues
 University of Massachusetts Amherst
 Math 235 - Spring 2014

Theorem 1. If A is a real 2×2 matrix with eigenvalues $a \pm b i(b \neq 0)$, and if $\vec{v}+i \vec{w}$ is an eigenvector of A corresponding to the eigenvalue $a+b i$, then

$$
C^{-1} A C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right], \quad \text { where } C=\left[\begin{array}{ll}
\vec{w} & \vec{v}
\end{array}\right] \text {. }
$$

The matrix $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ is known as a rotation-scaling matrix.
Example 2. Let $A=\left[\begin{array}{ll}3 & -5 \\ 1 & -1\end{array}\right]$.
(a) Diagonalize A : Find a diagonal matrix D and an invertible matrix S such that $A S=S D$.
(b) Compute the rotation-scaling matrix for A : Find an invertible matrix C such that $A C=$ $C\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.

ANSWER: We need to compute the eigenvalues and eigenvectors of A.
Computing the eigenvalues:

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}-2 \lambda+2 \\
& \lambda=\frac{2 \pm \sqrt{4-2 \cdot 4}}{2}=1 \pm i, \quad \text { by the quadratic formula. }
\end{aligned}
$$

Computing the eigenspaces:

$$
\begin{aligned}
& E_{1+i}=\operatorname{ker}(A-(1+i) I)=\operatorname{ker}\left[\begin{array}{cc}
2-i & -5 \\
1 & -2-i
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
5 \\
2-i
\end{array}\right]\right\} \\
& E_{1-i}=\operatorname{ker}(A-(1-i) I)=\operatorname{ker}\left[\begin{array}{cc}
2+i & -5 \\
1 & -2+i
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{c}
5 \\
2+i
\end{array}\right]\right\}
\end{aligned}
$$

a) We have $D=\left[\begin{array}{cc}1+i & 0 \\ 0 & 1-i\end{array}\right]$, and $S=\left[\begin{array}{cc}5 & 5 \\ 2-i & 2+i\end{array}\right]$. We verify that $A S=S D$:

$$
\begin{aligned}
A S & =\left[\begin{array}{ll}
3 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
5 & 5 \\
2-i & 2+i
\end{array}\right]=\left[\begin{array}{cc}
5+5 i & 5-5 i \\
3+i & 3-i
\end{array}\right] \\
S D & =\left[\begin{array}{cc}
5 & 5 \\
2-i & 2+i
\end{array}\right]\left[\begin{array}{cc}
1+i & 0 \\
0 & 1-i
\end{array}\right]=\left[\begin{array}{cc}
5+5 i & 5-5 i \\
3+i & 3-i
\end{array}\right] .
\end{aligned}
$$

b) Taking the eigenvalue $1+i$ and a corresponding eigenvector $\left[\begin{array}{c}5 \\ 2-i\end{array}\right]=\left[\begin{array}{c}5 \\ 2\end{array}\right]+\left[\begin{array}{c}0 \\ -1\end{array}\right] i$, we have $C=\left[\begin{array}{cc}0 & 5 \\ -1 & 2\end{array}\right]$ and $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$. We verify that $A C=C\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$:

$$
\begin{aligned}
& A C=\left[\begin{array}{ll}
3 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 5 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 5 \\
1 & 3
\end{array}\right] \\
& C\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & 5 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 5 \\
1 & 3
\end{array}\right] .
\end{aligned}
$$

