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The Problem with Rationals. (Due Friday; Do with a Partner.)

In class we will focus on defining the real numbers. But there is a prior question
of how to define the rational numbers. In earlier courses, you defined a rational
number as any number that can be expressed as the ratio p/q of two integers, with
the denominator q not equal to zero. The set of all rational numbers is usually de-
noted by Q; it was so named in 1895 by Peano after quoziente, Italian for "quotient".

The problem with this definition is that it already presumes that there is some
larger set of numbers (the real numbers) of which the rationals are a subset. This
is apparent when we say "as any number that can be expressed. . . ." We are think-
ing that the rationals already exist and are describing them as a subclass of some
larger set. This is even more obvious when we write out the formal definition:

Q =

{
r ∈ R : r =

p
q

, where p, q ∈ Z and q 6= 0
}

.

Clearly, the rational number r is already thought of as a pre-existing real number.
But the reals are not yet available to us. How might we define the rationals from

first principles? It is not enough to start with the integers and say that r = p
q ,

where p, q ∈ Z and q 6= 0. The expression p
q may have no meaning within the

integers, e.g., 3
2 is not an integer. Using Math 204 language, Z is not closed under

division (but Z is closed under addition, subtraction, and multiplication).

1.1 The Rationals as Ordered Pairs

Recall that the set Z∗ = Z\ {0} is the set of non-zero integers. The rational num-
bers can be formally defined as the equivalence classes of the set (Z × Z∗,∼),
where the cartesian product Z ×Z∗ is the set of all ordered pairs (m, n) where
m and n are integers and n 6= 0, and "∼" is the equivalence relation defined by
(m1, n1) ∼ (m2, n2) if and only if m1n2 −m2n1 = 0.

EXAMPLE 1.1.1. (4, 7) ∼ (−12,−21) because 4× (−21)− 7× (−12) = 0. Similarly, (2, 5) 6∼
(3, 10) because 2× 10− 5× 3 6= 0.

YOU TRY IT 1.1. Prove that ∼ is an equivalence relation on Z×Z∗. That is, prove that ∼ is
reflexive, symmetric, and transitive. You may wish to look back at your Math 135 notes and
Chapter 4 in the text Chapter Zero. Avoid using fractions or division by integers in your proof.
You should only need to use expressions that contain integers.

1.2 Operations on the Rationals

The ordered pair (p, q) represents the rational number that we ordinarily denote as
p
q . Notice that p1

q1
= p1

q1
if and only if p1q2 = p2q1 or p1q2 − p2q1 = 0 that is true

if and only if (p1, q1) ∼ (p2, q2). That is, two ordinary factions are equal exactly
when their corresponding ordered pairs are equivalent.

We define addition of two ordered pairs (a, b) and (c, d) differently than we
define addition of two vectors. To emphasize the difference let’s use the symbol ⊕.
Define

(a, b)⊕ (c, d) = (ad + bc, bd).

We need to make sure that when we add equivalent ordered pairs we get equiv-
alent answers. For example, since (9, 6) ∼ (3, 2) and (2, 5) ∼ (4, 10), check that
(9, 6)⊕ (2, 5) is equivalent to (3, 2)⊕ (4, 10).
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YOU TRY IT 1.2. More generally, prove: If (m1, n1) ∼ (m2, n2) and (p1, q1) ∼ (p2, q2), then

(m1, n1)⊕ (p1, q1) ∼ (m2, n2)⊕ (p2, q2).
Z You might find it easier to do the
multiplication problem first.YOU TRY IT 1.3. We define multiplication of two ordered pairs (a, b) and (c, d) in Z×Z∗ by

(a, b)⊗ (c, d) = (ac, bd).

So, we need to make sure that when we multiply equivalent ordered pairs we get equivalent
answers. Prove that if (m1, n1) ∼ (m2, n2) and (p1, q1) ∼ (p2, q2), then

(m1, n1)⊗ (p1, q1) ∼ (m2, n2)⊗ (p2, q2).

What about subtraction and division? Well, it is useful to define additive and
multiplicative inverses first. If (a, b) ∈ Z×Z∗, then its additive inverse is (−a, b).
Similarly, if If (a, b) ∈ Z×Z∗ and a 6= 0, then its multiplicative inverse is (b, a). It is easy to check that equivalent

ordered pairs have equivalent inverses:
If (a, b) ∼ (c, d), then (−a, b) ∼ (−c, d);
If (a, b) ∼ (c, d) and a 6= 0 and c 6= 0,
then (b, a) ∼ (d, c).

What does this show?

From Math 135 you know that an equivalence relation on a set creates a partition
of the set into disjoint equivalence classes. What we have shown is that each rational
number p

q can be thought of as an equivalence class of ordered pairs. We denote
this equivalence class by [p, q], where

[p, q] = {(a, b) ∈ Z×Z∗ : (a, b) ∼ (p, q)} .

If we want to add two rational numbers, say p1
q1

+ p2
q2

we actually add the two
equivalence classes [p1, q1] + [p2, q2] by adding any two elements in the corre-
sponding equivalence classes, say (a1, b1)⊕ (a2, b2) = (a1b2 + a2b1, b1b2) and taking
the equivalence class of the sum, [a1b2 + a2b1, b1b2]. So

[p1, q1] + [p2, q2] = [a1b2 + a2b1, b1b2].

The exercises above show that no matter which ordered pairs in the equivalence
classes for p1

q1
and p2

q2
you choose, you get the same answer.

EXAMPLE 1.2.1. Suppose we want to add 6
8 and 5

3 . Well, this corresponds to adding the
classes [6, 8] + [5, 3]. We do this addition of classes by adding any elements in the corre-
sponding classes of [6, 8] + [5, 3], say1 1 More simply, we could have added

(6, 8)⊕ (5, 3). Try this and check that
you get the same answer.(3, 4)⊕ (−15,−9) = (3(−9) + (−15)4, 4(−9)) = (−87,−36).

Now we take the class of this sum to get the answer:

[6, 8] + [5, 3] = [−87,−36].

This class corresponds to the rational −87
−36 which is the same as 29

12 . That is, (−87,−36) ∼
(29, 12). Notice that

6
8
+

5
3
=

18 + 40
24

=
29
12

.

Though adding two equivalence classes is a pain, everything works out as expected.

Take-home message Even if we knew nothing about real numbers, we could still
talk about rational numbers without resorting to "ratios of integers" by using the
language of ordered pairs. The representation of a rational as p

q is just a convenient
symbolic shorthand for the ordered pair (p, q). Since there are multiple ways to
represent the same rational, 1

2 = 2
4 , etc., we define an equivalence relation on

the ordered pairs so that two rationals are equal precisely when the two ordered
pairs are equivalent. We then show that the basic arithmetic operations of addition,
multiplication, subtraction, division work as expected on equivalence classes of
ordered pairs in Z×Z∗. You have checked some of those details above. But there
are others still to check such as commutativity or distributivity.
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