

Control Structures

CPSC 124: Introduction to Programming • Spring 2024 2

The Big Picture

Blocks – defined by {}

• a block is a group of statements
– defines the body of a class definition, a subroutine definition, a

branch of an if statement, …
– defines the scope of a variable definition (i.e. where that

variable's name can be used)

Making choices – (if statements)

• syntax and semantics
• tricky cases

• programming with if statements

CPSC 124: Introduction to Programming • Spring 2024 3

Scope

• scope refers to where a name
can be used

• the scope of a variable is
from the point of declaration
to the end of the closest
enclosing block

{
 System.out.println(a);
 System.out.println(b);

 int a = 10;

 {
 System.out.println(a);
 System.out.println(b);

 int b = 20;

 System.out.println(a);
 System.out.println(b);
 }

 System.out.println(a);
 System.out.println(b);
}

illegal statements are crossed
out – symbol not found

CPSC 124: Introduction to Programming • Spring 2024 4

Conditionals (if Statements)

• purpose: to execute statements only in certain
circumstances

if (condition) {
 statements
}

if (condition) {
 statements
} else {
 statements2
}

if (condition1) {
 statements1
} else if (condition2) {
 statements2
} else if (condition3) {
 statements3
} else {
 statementsN
}

if statement

execute statements if condition is true,
do nothing if condition is false

if-else statement

execute statements if condition is true, execute
statements2 if condition is false

else if statement

execute statements1 if condition1 is true,
execute statements2 if condition1 is false and
condition2 is true,
execute statements3 if both condition1 and
condition2 are false and condition3 is true,
otherwise execute statementsN

 – there can be any number of else if clauses
 – the final else can be omitted

CPSC 124: Introduction to Programming • Spring 2024 5

Conditions

Conditions are expressions whose value is of type boolean.

• relational operators – result is true or false
– test for equality or inequality: ==, !=

• applies to primitive types (int, double, char,
boolean, …)

• due to precision issues, not ideal for doubles

– comparison: <, >, <=, >=
• applies to numeric types (int, double, …) and char

• logical operators – apply to boolean values
– && – and

• a && b is true if both a and b are true, false otherwise

– || – or
• a || b is true if either a and b (or both) are true, false otherwise

– ! – not
• !a is true if a is false and false if a is true

for Strings s1, s2 use
s1.equals(s2) or
!s1.equals(s2)

CPSC 124: Introduction to Programming • Spring 2024 6

output is

b
2

CPSC 124: Introduction to Programming • Spring 2024 7

int points;
points = 85;
if (points >= 60) {
 System.out.println(“D”);
} else if (points >= 70) {
 System.out.println(“C”);
} else if (points >= 80) {
 System.out.println(“B”);
} else if (points >= 90) {
 System.out.println(“A”);
} else {
 System.out.println(“F”);
}

output is

B

output is

D

only the first branch with a true condition is done

CPSC 124: Introduction to Programming • Spring 2024 8

if (s.length() > 4) {
 if (s.length() < 10) {
 System.out.println(“medium”);
 } else {
 System.out.println(“short”);
 }
} pro tip: while { } is not required if statements

only contains one statement, always include { }

CPSC 124: Introduction to Programming • Spring 2024 9

Programming With ifs

Strategy –

• recognize that the task involves doing different things in
different circumstances

• get more specific – identify which variation
– either do or don't do something
– two alternatives
– more than two alternatives, do nothing is not an option
– more than two alternatives, do nothing is an option

• match the variation to the syntax
– do or don’t do → if statement
– two alternatives → if-else statement
– more than two alternatives → else if statement, with (do nothing is

not an option) or without (do nothing is an option) the final else

• fill in the elements in the pattern
– alternatives → statements
– circumstances under which to do each alternative → conditions

