

CPSC 124: Introduction to Programming • Spring 2024 13

 public static void foo (int a, String b) {
 System.out.println(“a: “+a);
 System.out.println(“length of b: “+b.length());
 }
}

CPSC 124: Introduction to Programming • Spring 2024 14

CPSC 124: Introduction to Programming • Spring 2024 15

Subroutine Contracts

• the contract allows for the separation of interface and
implementation
– defines how to use the subroutine and what it accomplishes (but

not how)
– part of the declaration

CPSC 124: Introduction to Programming • Spring 2024 16

Contracts and Javadoc

A subroutine's contract tells you everything you need to
know in order to use the subroutine.
• header

– syntax of how to call the subroutine
– types of parameters

• comment
– what the subroutine does
– what the parameters are for
– what the return value is
– preconditions

Javadoc is a tool that can generate documentation from
specially-formatted comments.
• from now on, we will use javadoc style for public

comments

CPSC 124: Introduction to Programming • Spring 2024 17

Javadoc

CPSC 124: Introduction to Programming • Spring 2024 18

Javadoc Format – Subroutines

/**
 * The first sentence should summarize what the
 * subroutine does. Any other sentences can
 * provide more information.
 *
 * @param param1name describe param1
 * @param param2name describe param2
 * @return describe return value
 */

CPSC 124: Introduction to Programming • Spring 2024 19

Javadoc Format – Classes

/**
 * The first sentence should summarize the
 * purpose of the class. Any other sentences can
 * provide more information.
 *
 * @author who wrote the class
 */

CPSC 124: Introduction to Programming • Spring 2024 20

Preconditions

• preconditions are assumptions made in order for the
subroutine to work correctly
– e.g. specific requirements for parameter values (other than type)
– must be stated as part of the subroutine's contract

• robust programs check preconditions whenever possible
– want to fail fast if there is a problem

• convention is to throw an IllegalArgumentException
if a precondition is violated

if (precondition is violated) {
 throw new IllegalArgumentException(“detail message”);
}

CPSC 124: Introduction to Programming • Spring 2024 21

The Big Picture

• subroutines are a self-contained unit
– variables declared inside one subroutine are not visible inside

another

• parameters allow the caller to pass values into a
subroutine

• return values allow the subroutine to hand one value back
to the caller
– the term function is often used for a subroutine that returns a

value, though the terminology can be used sloppily (e.g. “function”
may be used interchangeably with “subroutine”)

CPSC 124: Introduction to Programming • Spring 2024 22

CPSC 124: Introduction to Programming • Spring 2024 23

Syntax and Semantics

• declaration

– non-void return type indicates that this is a function, and
defines the type of the value handed back to the caller

• can only return one thing

– body must contain a single return statement for every path
• can have multiple return statements, but return exits the function

immediately so only one per path of execution

• call

– the statement form is also legal, but generally function calls
should occur in expressions

• otherwise the return value is ignored, which is generally not what you
want

modifiers return-type subroutine-name (parameter-list) {
 statements
}

…subroutine-name(parameter-values)…

CPSC 124: Introduction to Programming • Spring 2024 24

CPSC 124: Introduction to Programming • Spring 2024 25 CPSC 124: Introduction to Programming • Spring 2024 26

Scope

• the body of the subroutine is the
cook in the kitchen

• the caller is the waiter in the
dining room

• kitchen and dining room are separated – waiter can’t see
what is going on in the kitchen, cook can’t see what is going
on in the dining room
– subroutine cannot use the caller’s local variables
– caller cannot use the subroutine’s local variables

• waiter hands order slips to the cook through the pass-through
• cook hands plates of food back to the waiter

– only one plate of food per order

• only values – the order slip, the plate of food – go through the
pass through
– named parameters allow the cook to access values passed through
– caller must store or use the values they get back h

ttp
s:

//w
w

w
.a

nn
ar

bo
r.

co
m

/e
nt

er
ta

in
m

e
nt

/f
oo

d-
dr

in
k/

to
ur

in
g-

an
n-

ar
bo

rs
-b

e
st

-b
re

ak
fa

st
-jo

in
ts

/

