

CPSC 124: Introduction to Programming • Spring 2024 28

Arrays

• both parameter and return types can be arrays

CPSC 124: Introduction to Programming • Spring 2024 29

Subtleties of Parameters and Return Values

• parameters and return values are passed by value
– a copy of the value of the expression is passed
– for variables, this is a copy of what is in the box

• for primitive types (int, double, boolean, etc), the box
contains the actual value

• for all other types (arrays, String, all types defined by
classes), the box contains the address in memory where
the actual value is stored

• this means –
– assignment to a parameter has only a local effect (the

parameter's box is local to the subroutine)
– assignment to an array slot or invoking a mutable method on an

object has a global effect (only the address was copied when the
array/object was passed)

CPSC 124: Introduction to Programming • Spring 2024 30 CPSC 124: Introduction to Programming • Spring 2024 31

CPSC 124: Introduction to Programming • Spring 2024 32 CPSC 124: Introduction to Programming • Spring 2024 33

CPSC 124: Introduction to Programming • Spring 2024 34

Designing Subroutines

A subroutine's job should be a single complete relatively
self-contained task.

• if you can't state the task briefly and without a lot of use of
“and”, it is probably not a single task

• if the task involves changing many variables used
elsewhere, it is probably not a complete or self-contained
task
– return values provide only a limited way for a subroutine to affect

its caller
– the number of parameters is not limited, but there is such a thing

as too many

Think of a subroutine as a friend who can do a task for you.
If explaining what the task is takes too long, it is too big of a
job for one friend. If you have to be too involved in what the
friend is doing, you might as well do the task yourself.

CPSC 124: Introduction to Programming • Spring 2024 35

Designing Subroutines

In general, a static subroutine should do
one (and only one) of the following –

• obtain input
– print a prompt as needed
– return the input obtained

• produce output
– print rather than return

• compute something
– return the result rather than print
– all necessary values should come via

parameters, not input

• change the state of its parameters
– all necessary values should come via

parameters, not input
– no return value or printing

input and output limits a
subroutine to particular
applications – values can only
come from a particular source,
specific formatting

subroutines simplify organization

parameters and return
values allow the caller to
determine where values
come from and how
they are used

subroutines are reusable

CPSC 124: Introduction to Programming • Spring 2024 36

▸ input

▸ output

▸ compute

▸ change params

▸ input

▸ output

▸ compute

▸ change params

CPSC 124: Introduction to Programming • Spring 2024 37

▸ input

▸ output

▸ compute

▸ change params

▸ input

▸ output

▸ compute

▸ change params

CPSC 124: Introduction to Programming • Spring 2024 38

▸ input

▸ output

▸ compute

▸ change params

▸ input

▸ output

▸ compute

▸ change params

CPSC 124: Introduction to Programming • Spring 2024 39

▸ input

▸ output

▸ compute

▸ change params

