Motivation

Objects are the next step in organizing program and building
modules —

* we can group subroutines and variables that together have a
single whole purpose into an object, and treat that object like a
bigger black box

in doing this, we define new types

The card and dice game programs from lab 8 and the war
program from lab 9 provide examples of why this is useful.
* a class defines a kind of friend who can perform certain tasks
» an object is an actual friend standing there

mﬁ;san have multiple objects / multiple friends capable of the same
» you can outsource stuff to your friends

writing the program no longer means you being responsible for
specifying every detail — you can focus on how to link together what
the friends can do instead of also having to know how to do it -

CPSC 124: Introduction to Programming + Spring 2024 34

Program Design With Classes

Advantages of object-oriented programming —

» more powerful black boxes (abstraction)

>

+
+
v
get suit and shuffle, deal, number add and remove cards,
value of cards left get card (by position),

sort by suit and value

* reusable software components

https://en.wikipedia.org/wiki/Playing_card
https:/www.cuemath.. ili
CPSC 124: Inroduction to Programming + Spring 202 hitps://www.freepik.com/fi i playing-card-isolated_21306216.htm

Object-Oriented Analysis and Development (OOAD)

+ aka identifying classes

* it's better if each friend is responsible for a related
collection of tasks
easier to figure out who to ask for what functionality — makes
writing a program easier
more likely to be reusable — the same friend can be employed in
future programs, too

CPSC 124: Introduction to Programming + Spring 2024 35

Program Design With Classes

* in the real world, there are various kinds of things...

CPSC 124: Introduction to Programming Spring 2024

Program Design With Classes

 in the program, there are representations of things...

private int suit_; private int value_;
private int value_; private int numsides_;

 ...and stuff is done to manipulate those representations to
mimic what the real-life action does to the real thing

i
ggglgafgr(()i £} public void roll () {

value_ = (int)(Math.random()*numsides_+1);

}

Class Design — Getting Started

« textual analysis — identify things that will be objects
(nouns), with the kinds of things being candidates for
classes

consider what is important about that thing in order to help weed
out concepts that are more about process or that aren't
necessary to represent

CPSC 124: Introduction to Programming + Spring 2024 a0

Program Design With Classes

Developing a program —

« divide the work of the program up into modules
identify classes, then methods within those classes

main program — captures the flow of control that coordinates use
of the modules

 develop pseudocode for the main program
« develop pseudocode for methods that need it as they are
implemented

« translate the pseudocode into code

CPSC 124: Introduction to Programming + Spring 2024 39

Class Design — Getting Started

score

vowel

letter

<

tile bag
board
square

play word

<

tile
point
value
scoring

draw tile

I &I I

scrabble
dictionary|

<

(legal
words)

<

tile rack

game
board

<

tum

challenge -

consonant|

<
L]

player

CPSC 124: Introduction to Programming Spring 2024 a1

Class Design — Getting Started

» Scrabble

board square — tile in that position, scoring info
game board — the arrangement of board squares

tile rack — contents

tile bag — contents

tile — letter, point value

dictionary — the words that are legal to play
player — score, tiles

CPSC 124: Introduction to Programming + Spring 2024

* Scrabble

board square - tile in that position, scoring
info
« multiple pieces of information (complex!) -
BoardSquare class
game board — the arrangement of board
squares
« collection of stuff (complex!) -~ GameBoard
class
tile rack — contents
* collection of stuff (complex!) - TileRack class
tile bag — contents
* collection of stuff (complex!) - TileBag class
tile — letter, point value
* multiple pieces of information (complex!) - Tile
class
dictionary — the words that are legal to play
* collection of stuff (complex!) - Dictionary class
player — score, tiles
* multiple pieces of information (complex!) —
Player class

board
-

point

scrabble

(legal

words)

er
board

challenge -

consonant|

—

Class Design

* creating a new class is appropriate when...

the kind of thing is complicated — multiple pieces of information,
complex and/or uncertain representation, complex tasks

there's not an existing type well-suited for the kind of thing

« (full consideration of this point should wait until after the methods have
been identified)

CPSC 124: Introduction to Programming + Spring 2024 43

Class Design — Constructors and Methods

 aclass has three kinds of elements
instance variables
constructors
methods

 “what's important about this thing?” focused on what
needs to be represented — instance variables

« for constructors — you have a magic wand to conjure new
objects into existence...what should they look like? (how
should the instance variables be initialized?)

same initial value for all instances?

« for methods — textual analysis, focusing on verbs/actions
that apply to the thing

CPSC 124: Introduction to Programming Spring 2024 a5

Scrabble
BoardSquare — tile contained, scoring info
create a particular kind (triple word score, etc)
place tile
GameBoard - tiles on the board and their arrangement
create empty board
play word (return score)
TileRack — contents
create empty rack
add tile
remove patrticular tile
TileBag — contents
create containing all tiles
draw tile (remove random tile)
Tile — letter, point value
create particular tile (with letter, point value)
Dictionary — the words that are legal to play
create containing all legal words
look up word (determine if a particular word is legal)
Player — score, tiles
create with no tiles, score 0
add to score

Scrabble

BoardSquare — tile contained, scoring info
create a particular kind (triple word score, etc)
place tile

GameBoard - tiles on the board and their arrangement
create empty board
play word (return score)
display board

TileRack — contents
create empty rack

Player — score, tiles
create with no tiles, score 0
manipulate set of tiles (add tile,

add tile set ot
remove particular tile r‘«:j”;‘ive particular tile)
print tiles add to score

TileBag — contents get score

create containing all tiles
draw tile (remove random tile)
Tile — letter, point value
create particular tile (with letter, point value)
get letter, get point value
Dictionary — the words that are legal to play
create containing all legal words
look up word (determine if a particular word is legal)

IS
&

CPSC 124: Introduction to Programming + Spring 2024

Completing the Design

strive for a complete list of needed operations
review specifications, descriptions, etc to make sure no
operations were missed (textual analysis)
write pseudocode to help identify program needs not present (or
obvious) in the real-world version
e.g. printing the contents of the tile rack
think through the flow of information

e.g. the board manages the board squares, so we will need to ask the
board to place a word rather than interacting directly with the squares

complete the abstractions
e.g. getters to access stored information
e.g. ways to add to, remove from, and iterate through collections

some of these things may not be required by this particular
program, but are helpful for future reusability

CPSC 124: Introduction to Programming + Spring 2024 a7

