

CPSC 124: Introduction to Programming • Spring 2024 34

Motivation

Objects are the next step in organizing program and building
modules –
• we can group subroutines and variables that together have a

single whole purpose into an object, and treat that object like a
bigger black box
– in doing this, we define new types

The card and dice game programs from lab 8 and the war
program from lab 9 provide examples of why this is useful.
• a class defines a kind of friend who can perform certain tasks
• an object is an actual friend standing there

– you can have multiple objects / multiple friends capable of the same
things

• you can outsource stuff to your friends
– writing the program no longer means you being responsible for

specifying every detail – you can focus on how to link together what
the friends can do instead of also having to know how to do it

CPSC 124: Introduction to Programming • Spring 2024 35

Object-Oriented Analysis and Development (OOAD)

• aka identifying classes

• it’s better if each friend is responsible for a related
collection of tasks
– easier to figure out who to ask for what functionality – makes

writing a program easier
– more likely to be reusable – the same friend can be employed in

future programs, too

CPSC 124: Introduction to Programming • Spring 2024 36

Program Design With Classes

Advantages of object-oriented programming –

• more powerful black boxes (abstraction)

• reusable software components

https://en.wikipedia.org/wiki/Playing_card
https://www.cuemath.com/data/card-probability/
https://www.freepik.com/free-vector/ace-diamonds-playing-card-isolated_21306216.htm

get suit and
value

shuffle, deal, number
of cards left

add and remove cards,
get card (by position),
sort by suit and value

CPSC 124: Introduction to Programming • Spring 2024 37

Program Design With Classes

• in the real world, there are various kinds of things…

• …and you do stuff to manipulate those things

CPSC 124: Introduction to Programming • Spring 2024 38

Program Design With Classes

• in the program, there are representations of things...

• …and stuff is done to manipulate those representations to
mimic what the real-life action does to the real thing

private int suit_;
private int value_;

private int value_;
private int numsides_;

public Card
dealCard () { … } public void roll () {

 value_ = (int)(Math.random()*numsides_+1);
}

CPSC 124: Introduction to Programming • Spring 2024 39

Program Design With Classes

Developing a program –

• divide the work of the program up into modules
– identify classes, then methods within those classes
– main program – captures the flow of control that coordinates use

of the modules

• develop pseudocode for the main program
• develop pseudocode for methods that need it as they are

implemented

• translate the pseudocode into code

CPSC 124: Introduction to Programming • Spring 2024 40

Class Design – Getting Started

• textual analysis – identify things that will be objects
(nouns), with the kinds of things being candidates for
classes
– consider what is important about that thing in order to help weed

out concepts that are more about process or that aren't
necessary to represent

CPSC 124: Introduction to Programming • Spring 2024 41

Class Design – Getting Started

CPSC 124: Introduction to Programming • Spring 2024 42

Class Design – Getting Started

• Scrabble
– board square – tile in that position, scoring info
– game board – the arrangement of board squares
– tile rack – contents
– tile bag – contents
– tile – letter, point value
– dictionary – the words that are legal to play
– player – score, tiles

CPSC 124: Introduction to Programming • Spring 2024 43

Class Design

• creating a new class is appropriate when…

– the kind of thing is complicated – multiple pieces of information,
complex and/or uncertain representation, complex tasks

– there's not an existing type well-suited for the kind of thing
• (full consideration of this point should wait until after the methods have

been identified)

CPSC 124: Introduction to Programming • Spring 2024 44

Class Design• Scrabble
– board square – tile in that position, scoring

info
• multiple pieces of information (complex!) →

BoardSquare class

– game board – the arrangement of board
squares

• collection of stuff (complex!) → GameBoard
class

– tile rack – contents
• collection of stuff (complex!) → TileRack class

– tile bag – contents
• collection of stuff (complex!) → TileBag class

– tile – letter, point value
• multiple pieces of information (complex!) → Tile

class
– dictionary – the words that are legal to play

• collection of stuff (complex!) → Dictionary class
– player – score, tiles

• multiple pieces of information (complex!) →
Player class

CPSC 124: Introduction to Programming • Spring 2024 45

Class Design – Constructors and Methods

• a class has three kinds of elements
– instance variables
– constructors
– methods

• “what's important about this thing?” focused on what
needs to be represented → instance variables

• for constructors – you have a magic wand to conjure new
objects into existence...what should they look like? (how
should the instance variables be initialized?)
– same initial value for all instances?

• for methods – textual analysis, focusing on verbs/actions
that apply to the thing

CPSC 124: Introduction to Programming • Spring 2024 46

Class Design• Scrabble
– BoardSquare – tile contained, scoring info

• create a particular kind (triple word score, etc)
• place tile

– GameBoard – tiles on the board and their arrangement
• create empty board
• play word (return score)

– TileRack – contents
• create empty rack
• add tile
• remove particular tile

– TileBag – contents
• create containing all tiles
• draw tile (remove random tile)

– Tile – letter, point value
• create particular tile (with letter, point value)

– Dictionary – the words that are legal to play
• create containing all legal words
• look up word (determine if a particular word is legal)

– Player – score, tiles
• create with no tiles, score 0
• add to score

CPSC 124: Introduction to Programming • Spring 2024 47

Completing the Design

• strive for a complete list of needed operations
– review specifications, descriptions, etc to make sure no

operations were missed (textual analysis)
– write pseudocode to help identify program needs not present (or

obvious) in the real-world version
• e.g. printing the contents of the tile rack

– think through the flow of information
• e.g. the board manages the board squares, so we will need to ask the

board to place a word rather than interacting directly with the squares

• complete the abstractions
– e.g. getters to access stored information
– e.g. ways to add to, remove from, and iterate through collections
– some of these things may not be required by this particular

program, but are helpful for future reusability

CPSC 124: Introduction to Programming • Spring 2024 48

Class Design• Scrabble
– BoardSquare – tile contained, scoring info

• create a particular kind (triple word score, etc)
• place tile

– GameBoard – tiles on the board and their arrangement
• create empty board
• play word (return score)
• display board

– TileRack – contents
• create empty rack
• add tile
• remove particular tile
• print tiles

– TileBag – contents
• create containing all tiles
• draw tile (remove random tile)

– Tile – letter, point value
• create particular tile (with letter, point value)
• get letter, get point value

– Dictionary – the words that are legal to play
• create containing all legal words
• look up word (determine if a particular word is legal)

– Player – score, tiles
• create with no tiles, score 0
• manipulate set of tiles (add tile,

remove particular tile)
• add to score
• get score

