The Big Picture

a subclass object can be used any place a superclass

type is expected

e.g.
BankAccount acct =

new InvestmentAccount(2,”Arthur”,500,.015);

acct.withdraw(100);

compiler checks the declared type of the object

acct.withdraw(100) is legal because BankAccount has a withdraw

method that takes a double

works at runtime because a subclass has all of the elements (instance
variables and methods) that its superclass does — so
InvestmentAccount also has a withdraw method that takes a

double

at runtime, the version called belongs to the actual type of

the object (polymorphism)

acct.withdraw(100) will result in a fee if the number of
withdrawals exceeds the limit because acct actually refers to an_

InvestmentAccount

Abstract Classes

Establishing is-a relationships between types is important
for flexible, reusable code — but the specific semantics of
extends creates some problems.

All animals eat, sleep, and make noise, but how they
make noise varies - cows moo, ducks quack, horses
neigh, etc. If you were designing a collection of
classes for barnyard animals, what would be the best
choice?

make Animal a class, with Cow, Duck, and Horse
extending Animal

5/'¢ make Animalan abstract class, with Cow, Duck, and
Horse extending Animal

just make Cow, Duck, and Horse classes (no Animal)

none of these are appropriate choices

CPSC 124: Introduction to Programming + Spring 2024

observations -
nothing is just an animal - it is always

some kind of animal (cow, duck, horse, ...)

3

all animals have a common ability (making

noise) but there is not a common

implementation (moo, quack, neigh, ...)

Animal as a concrete class is not appropriate

because there is no such thing as an animal that

isn't also some kind of animal - shouldn’t be
able to create Animal objects

a body for makeNoise in Animal is not

appropriate because there isn't a way to make

noise shared by all animals

Animal as an abstract class allows for reuse of
code common to all kinds of animals as well as

using Animal as a type (allows coding to the
interface)

These two things are very powerful.
Consider the book's example of a shape-drawing program —

can code to the interface — can have a single collection of

Shapes, with a loop to go through and paint them all
avoids repeated code resulting from needing a separate
collection for each kind of shape

makes it possible to write new Shape classes and use them with
the existing shape-drawing program without changing the
existing code

can encapsulate what varies — each Shape subclass can
have its own paint method, capturing the differences
between kinds of shapes

separates the rest of the program from the details of individual
shapes, limiting the impact of change — updating how one shape
is painted only affects that one shape's class

CPSC 124: Introduction to Programming + Spring 2024 14

Abstract Classes

abstract classes handle this situation

syntax

public abstract class ClassName { .. }

abstract means that it is not possible to create instances of
ClassName — “nothing is just a ClassName*
abstract is required if there is at least one abstract method

public abstract returntype methodname ( paramlist );

abstract means that no body is supplied — “no common way of doing
the operation”
must be overridden in a subclass or else the subclass is also abstract
note the difference between ; for an abstract method and {} for a (not
abstract) method with an empty body
abstract classes must still have one or more constructors

can't use directly to create a standalone object, but subclass constructors
still need to be able to create the core of the onion

can be protected because only subclasses will use them

can also have instance variables and methods with bodies



Deciding on Abstract Classes and Methods

Language cues —

the unifying concept isn't talked about as its own thing -
abstract class

compare “A bank account ..., a checking account ..., a savings
account ...” (bank account is its own thing — not abstract) and “All
kinds of bank accounts ...; a checking account ..., a savings
account ...” (bank account is a category, not its own thing — abstract)

there is a common operation, but how it works depends
on the kind of thing - abstract method
e.g. “All tickets have a price. The price of a walkup ticket is ...,
the price of an advance ticket is ..., “ (abstract method, unless the
only difference is the amount)
e.g. “The price of a ticket depends on the type of ticket and
potentially other properties of the ticket.” (abstract method)

CPSC 124: Introduction to Programming + Spring 2024



