

CPSC 124: Introduction to Programming • Spring 2024 13

The Big Picture

• a subclass object can be used any place a superclass
type is expected
– e.g.
BankAccount acct =
 new InvestmentAccount(2,”Arthur”,500,.015);
acct.withdraw(100);

– compiler checks the declared type of the object
• acct.withdraw(100) is legal because BankAccount has a withdraw

method that takes a double
• works at runtime because a subclass has all of the elements (instance

variables and methods) that its superclass does – so
InvestmentAccount also has a withdraw method that takes a
double

• at runtime, the version called belongs to the actual type of
the object (polymorphism)
– acct.withdraw(100) will result in a fee if the number of

withdrawals exceeds the limit because acct actually refers to an
InvestmentAccount

CPSC 124: Introduction to Programming • Spring 2024 14

These two things are very powerful.
Consider the book's example of a shape-drawing program –

• can code to the interface – can have a single collection of
Shapes, with a loop to go through and paint them all
– avoids repeated code resulting from needing a separate

collection for each kind of shape
– makes it possible to write new Shape classes and use them with

the existing shape-drawing program without changing the
existing code

• can encapsulate what varies – each Shape subclass can
have its own paint method, capturing the differences
between kinds of shapes
– separates the rest of the program from the details of individual

shapes, limiting the impact of change – updating how one shape
is painted only affects that one shape's class

CPSC 124: Introduction to Programming • Spring 2024 15

Abstract Classes

Establishing is-a relationships between types is important
for flexible, reusable code – but the specific semantics of
extends creates some problems.

observations –

nothing is just an animal – it is always
some kind of animal (cow, duck, horse, ...)

all animals have a common ability (making
noise) but there is not a common
implementation (moo, quack, neigh, ...)

Animal as a concrete class is not appropriate
because there is no such thing as an animal that
isn't also some kind of animal – shouldn’t be
able to create Animal objects

a body for makeNoise in Animal is not
appropriate because there isn’t a way to make
noise shared by all animals

Animal as an abstract class allows for reuse of
code common to all kinds of animals as well as
using Animal as a type (allows coding to the
interface)

CPSC 124: Introduction to Programming • Spring 2024 16

Abstract Classes

• abstract classes handle this situation

• syntax

– public abstract class ClassName { … }
• abstract means that it is not possible to create instances of
ClassName – “nothing is just a ClassName“

• abstract is required if there is at least one abstract method

– public abstract returntype methodname (paramlist);
• abstract means that no body is supplied – “no common way of doing

the operation”
– must be overridden in a subclass or else the subclass is also abstract

• note the difference between ; for an abstract method and {} for a (not
abstract) method with an empty body

– abstract classes must still have one or more constructors
• can't use directly to create a standalone object, but subclass constructors

still need to be able to create the core of the onion
• can be protected because only subclasses will use them

– can also have instance variables and methods with bodies

CPSC 124: Introduction to Programming • Spring 2024 17

Deciding on Abstract Classes and Methods

Language cues –

• the unifying concept isn't talked about as its own thing →
abstract class
– compare “A bank account …, a checking account …, a savings

account ...” (bank account is its own thing – not abstract) and “All
kinds of bank accounts …; a checking account …, a savings
account …” (bank account is a category, not its own thing – abstract)

• there is a common operation, but how it works depends
on the kind of thing → abstract method
– e.g. “All tickets have a price. The price of a walkup ticket is …,

the price of an advance ticket is …, “ (abstract method, unless the
only difference is the amount)

– e.g. “The price of a ticket depends on the type of ticket and
potentially other properties of the ticket.” (abstract method)

