
Things

thing properties/attributes manipulations notes

money • amount maybe just store as an int

board

• layout (what squares are where)

• position of players

• number of houses/hotels on each
property

• amount of money in free parking pot

• move piece

• determine current position of a player

think of physical game board, and what information it
displays and what things are placed on it

player

• amount of money

• is bankrupt?

• properties owned

• position on board

• associated piece/token

• retrieve amount of money

• adjust amount of money (add/subtract)

• take turn

with the idea of the board storing player positions, that may
not need to be stored with each player
is it necessary to separately track whether or not the player
is bankrupt, or is the amount of money enough?

pieces/tokens

dice

• roll

• determine if last roll was doubles

• determine value of last roll

a pair of dice, since don't need an individual die for anything

property

• name

• purchase price

• rent (at various levels)

• mortgage price

• is mortgaged?

• cost of houses/hotels

• number of houses/hotels

• determine rent

chance card
community chest card

•

deck of chance cards
deck of community chest
cards

• the cards in the deck •

bank
• unsold properties

• number of unsold houses/hotels

• a logical concept more than a physical thing
might be useful for keeping track of information such as the
unsold properties, available houses/hotels, etc

game display

• separate details of user interface/how to draw board on the
screen from the actual information stored by the board to
simplify and to make it easier to offer alternate user
interfaces (e.g. graphics version and a text-only version)

Game Logic
repeat

for each player left in the game (not bankrupt)
take turn

until only one player is not bankrupt
not bankrupt player is the winner

Design Strategy – Data First!

• first

• write down/obtain detailed specifications (game rules, etc) – a description of what the program is supposed to do

• then repeat as needed

• identify the major things/concepts in the specifications – tend to be nouns, some or all will generally become classes

• identify properties/attributes of the things/concepts – will generally become instance variables

• identify ways in which the things/concepts are manipulated – will generally become methods

• identify the information needed to carry out each operation – determines what class will contain the method and/or parameters to that method

• write pseudocode to help identify things, attributes, operations – start with one-sentence description, then refine each step by repeatedly coming up with one-sentence descriptions

• write header files for classes

• refine pseudocode in terms of the classes/methods you've developed / implement

roll dice
move piece
if pass go
 handle passing go
if landed on a property

handle property
else if landed on free parking

handle free parking
else if landed on go to jail

handle go to jail
else if landed on chance/community chest
 handle chance/community chest
else if landed on luxury tax
 handle luxury tax
else if landed on income tax
 handle income tax

if property is owned by another player
pay rent

else if property is owned by current player
 do nothing
else if property is unowned (owned by bank)
handle unowned property

player gets money in pot

player pays $75

ask if player wants to pay $200 or 10%
if $200, player pays $200
else
 compute player's worth
 pay 10% of worth

ask if player wants to purchase
if yes
 player pays purchase price
 player owns property
otherwise
 property is auctioned

