This homework covers sections 4.3-4.4. It is due in class Friday, April 26. Hand in a hardcopy of your solutions.

While you may discuss problems with other students, you should always make the first attempt on a problem yourself and you must write up your own solutions in your own words. You may not collaboratively write solutions or copy a solution that one person in the group writes up.

1. A context-free grammar for a simplified version of propositional	$S \longrightarrow A$
logic is shown.	$S \longrightarrow B$
(a) Draw a parse tree for the proposition	$A \longrightarrow p$
	$A \longrightarrow q$
$(r ightarrow p) \wedge q$	$A \longrightarrow r$
	$A \longrightarrow s$
using this grammar.	$B \longrightarrow \neg F$
(b) Draw a parse tree for the proposition	$B \longrightarrow F \wedge F$
$((\neg r) \land q) \to ((p \lor r) \land s)$	$B \longrightarrow F \vee F$
	$B \longrightarrow F \to F$
using this grammar.	$F \longrightarrow A$
	$F \longrightarrow (B)$
2. The context free memory charms generated the lenguage	$S \longrightarrow ABS$
2. The context-free grammar shown generates the language	$A \longrightarrow abb$
$\{w \in \{a, b, c\}^* \mid \text{every } a \text{ is followed by at least two } bs \}$	$R \longrightarrow hR$
Chart that this granger is ambiguous by giving either two page	$R \longrightarrow aR$
trees or two left derivations for the string cabbabble	$h \longrightarrow ch$
tices of two fert derivations for the string cabouode.	$S \longrightarrow \epsilon$
	$A \longrightarrow \epsilon$
	$R \longrightarrow \epsilon$

- 3. Consider the parse tree shown. It is based on a context-free grammar G.
 - (a) Give the production rules that must be part of G in order for the parse tree to be valid.
 - (b) What is the string being parsed by this parse tree?
 - (c) Give the left derivation corresponding to this parse tree.
 - (d) Give the right derivation corresponding to this parse tree.

4. Give a concise description of the language accepted by each of the following pushdown automata. Explain your answer by describing how the machine works when accepting a string in the language.

- 5. For each of the following, draw a transition diagram for a pushdown automaton that accepts the language. Explain how your machines work.
 - (a) $L = \{ a^n b^n \mid n \text{ is a multiple of } 3 \}$
 - (b) Let L be the language over the alphabet {(,), [,], a, b} that consists of strings where the parentheses and brackets are properly nested. That is, each opening (or [is followed by a corresponding) or], each closing) or] is preceded by a corresponding (or], and within each matching pair, any other (, [,), and] symbols are also properly nested. For example, (ab()[bb]) is properly nested but (a[b)]a, ([ba][aba), and ba) are not.
- 6. Show that the language $L = \{ w \in \{a, b\}^* \mid n_a(w) > n_b(w) \}$ is deterministic context-free.