Key Points

- the elements of boolean algebra
 - elements
 - operators
 - rules
- a common sense understanding of the rules
- applying the rules

CPSC 229: Foundations of Computation • Spring 2024

CPSC 229: Foundations of Computation • Spring 2024

• showing logical equivalence by finding chains of equivalences

The Elements of Boolean Algebra

an algebra consists of a set of elements, operations defined on those elements, and a set of rules that govern the behavior of those operations

	Double negation	$\neg(\neg p) \equiv p$
	Excluded middle	$p \lor \neg p \equiv \mathbb{T}$
 boolean algebra 	Contradiction	$p \land \neg p \equiv \mathbb{F}$
- elements: true (T), false (F)	Identity laws	$\mathbb{T} \land p \equiv p$
		$\mathbb{F} \lor p \equiv p$
\rightarrow operators. Λ , Ψ , \neg , \rightarrow , \leftrightarrow , \oplus , $=$	Idempotent laws	$p \wedge p \equiv p$
– rules –		$p \lor p \equiv p$
	Commutative laws	$p \wedge q \equiv q \wedge p$
		$p \lor q \equiv q \lor p$
	Associative laws	$(p \land q) \land r \equiv p \land (q \land r)$
		$(p \lor q) \lor r \equiv p \lor (q \lor r)$
	Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
		$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
	DeMorgan's laws	$\neg (p \land q) \equiv (\neg p) \lor (\neg q)$
		$\neg(p \lor q) \equiv (\neg p) \land (\neg q)$
CPSC 229: Foundations of Computation • Spring 2024		22

Understanding the Rules	excluded middle: at least one of p or ¬p must be true contradiction: it is not possible for both p and ¬p to be true
Double negation $\neg(\neg p) \equiv p$ Excluded middle $p \lor \neg p \equiv \mathbb{T}$ Contradiction $p \land \neg p \equiv \mathbb{F}$ Identity laws $\mathbb{T} \land p \equiv p$	distributive law: $ace \land (spades \lor clubs) \equiv$ $(ace \land spades) \lor (ace \land clubs)$
$\mathbb{F} \lor p \equiv p$ Idempotent laws $p \land p \equiv p$ $p \lor p \equiv p$ $p \lor q \equiv q \land p$	a club is equivalent to this card is the ace of spades or the ace of clubs
$\begin{array}{c} \text{Commutative naiss} & p \land q = q \land p \\ \hline & p \lor q \equiv q \lor p \\ \hline \text{Associative laws} & (p \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r \equiv p \land (q \land r) \\ \hline & (q \land q) \land r = p \land (q \land r) $	DeMorgan's laws: ¬(queen ∧ spades) ≡ ¬queen ∨ ¬spade
$\begin{array}{l} (p \lor q) \lor r \equiv p \lor (q \lor r) \\ \hline \text{Distributive laws} & p \land (q \lor r) \equiv (p \land q) \lor (p \land r) \\ p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \\ \hline \text{DeMorgan's laws} & \neg (p \land q) \equiv (\neg p) \lor (\neg q) \end{array}$	this card is not the queen of spades is equivalent to this card is not a queen or it is not a spade
$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$	¬(queen ∨ spades)≡ ¬queen ∧ ¬spade
note: common sense and obviousness are not proofs – prove that these laws are true with truth tables	it is not the case that this card is a queen or a spade is equivalent to this card is not a queen and not a spade

	Double negation	$\neg(\neg p) \equiv p$		
Rules Summary	Excluded middle	$p \lor \neg p \equiv \mathbb{T}$		
	Contradiction	$p \land \neg p \equiv \mathbb{F}$		
	Identity laws	$\mathbb{T} \wedge p \equiv p$		
		$\mathbb{F} \lor p \equiv p$		
	Idempotent laws	$p \wedge p \equiv p$		
		$p \lor p \equiv p$		
definitions -	Commutative laws	$p \wedge q \equiv q \wedge p$		
$p \rightarrow q \equiv \neg p \lor q$		$p \lor q \equiv q \lor p$		
$(\mathbf{a} \vee \mathbf{p}_{-}) \wedge (\mathbf{b} \vee \mathbf{q}_{-}) = \mathbf{p} \vee \mathbf{q}$	Associative laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$		
p ↔ q = (p v q) ∧ (q v p)		$(p \lor q) \lor r \equiv p \lor (q \lor r)$		
	Distributive laws	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$		
		$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$		
	DeMorgan's laws	$\neg (p \land q) \equiv (\neg p) \lor (\neg q)$		
		$\neg (p \lor q) \equiv (\neg p) \land (\neg q)$		
 duality – for any tautology that uses only ∧, ∨, ¬, another tautology can be obtained by interchanging ∧ with ∨, and T with F 				
 First Substitution Law – for any tautology containing p, another tautology can be obtained by replacing all occurrences of p with (Q) 				

- Second Substitution Law if P ≡ Q, substituting Q for any occurrence of P in R results in a logically equivalent proposition
 chaining logical equivalences P ≡ R follows from P ≡ Q and Q ≡ R

25

 9. For each of the following pairs of propositions, show that the two propositions are logically equivalent by finding a chain of equivalences from one to the other. State which definition or law of logic justifies each equivalence in the chain. a) p ∧ (q ∧ p), p ∧ q b) (¬p) → q, p ∨ q c) (¬p) → (¬p ∧ q) (¬p) → (¬p) ∧ (¬			
c) $(p \lor q) \land \neg q, p \land \neg q$ e) $(p \to r) \land (q \to r), (p \lor q) \to r$ f) $p \to (p \land q), p \to q$			
10. For each of the following compound propositions, find a simpler proposition that is logically equivalent. Try to find a proposition that is as simple as possible.			
a) $(p \land q) \lor \neg q$ b) $\neg (p \lor q) \land p$ c) $p \rightarrow \neg p$ d) $\neg p \land (p \lor q)$ e) $(q \land p) \rightarrow q$ f) $(p \rightarrow q) \land (\neg p \rightarrow q)$			
11. Express the negation of each of the following sentences in natural English:			
a) It is sunny and cold.			
b) I will have cake or I will have pie.			
c) If today is Tuesday, this is Belgium.			
d) If you pass the final exam, you pass the course.			
12. Apply one of the laws of logic to each of the following sentences, and rewrite it as an equivalent sentence. State which law you are applying.			
a) I will have coffee and cake or pie.			
b) He has neither talent nor ambition.			
c) You can have spam, or you can have spam.			
CPSC 229: Foundations of Computation • Spring 2024	26		