- the elements of boolean algebra
elements
operators
- rules
- a common sense understanding of the rules
- applying the rules
- showing logical equivalence by finding chains of equivalences

CPSC 229: Fundations of Computation \cdot Spring 2024

Understanding the Rules

note: common sense and obviousness are not proofs - prove that these laws are true with truth tables
cPSC 229: Foundaions ot Computaion . Spring 2022
excluded middle: at least one of p or \neg p must be true
contradiction: it is not possible for both p and $\neg p$ to be true

distributive law:

ace $\wedge($ spades \vee clubs) \equiv
(ace \wedge spades) \vee (ace \wedge clubs)
this card is an ace and either a spade or a club is equivalent to
this card is the ace of spades or the ace of clubs

DeMorgan's laws:
$\neg($ queen \wedge spades) \equiv queen $\vee \neg$ spade
this card is not the queen of spades is equivalent to
his card is not a queen or it is not a spade
$\neg($ queen \vee spades) \equiv qqueen $\wedge \neg$ spade it is not the case that this card is a queen or a spade
is equivalent to
this card is not a queen and not a spade

The Elements of Boolean Algebra

boolean algebra - elements: true (\mathbb{T}), false (\mathbb{F}) - operators: $\wedge, ~ \vee, \neg, \rightarrow, \leftrightarrow, \oplus, \equiv$ - rules	Double negation	$\neg(\neg p) \equiv p$
	Excluded middle Contradiction	$\begin{aligned} & p \vee \neg p \equiv \mathbb{T} \\ & p \wedge \neg p \equiv \mathbb{F} \end{aligned}$
	Identity laws	$\begin{aligned} & \mid \mathbb{T} \wedge p \equiv p \\ & \mathbb{F} \vee p \equiv p \\ & \hline \end{aligned}$
	Idempotent laws	$\begin{aligned} & p \wedge p \equiv p \\ & p \vee p \equiv p \end{aligned}$
	Commutative laws	$\begin{aligned} & p \wedge q \equiv q \wedge p \\ & p \vee q \equiv q \vee p \\ & \hline \end{aligned}$
	Associative laws	$\begin{aligned} & (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\ & (p \vee q) \vee r \equiv p \vee(q \vee r) \end{aligned}$
	Distributive laws	$\begin{aligned} & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\ & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\ & \hline \end{aligned}$
	DeMorgan's laws	$\begin{aligned} & -(p \wedge q) \equiv(\neg p) \vee(\neg q) \\ & \neg(p \vee q) \equiv(\neg p) \wedge(\neg q) \end{aligned}$

CPSC 229: Foundatains ot Computation • Spring 2024

Rules Summary	Double negation	$\neg(\neg p) \equiv p$
	Excluded middle Contradiction	$\begin{aligned} & p \vee \neg p \equiv \mathbb{T} \\ & p \wedge \neg p \equiv \mathbb{F} \end{aligned}$
definitions -$\begin{aligned} & p \rightarrow q \equiv \neg p \vee q \\ & p \leftrightarrow q \equiv(\neg p \vee q) \wedge(\neg q \vee p) \end{aligned}$	Identity laws	$\begin{aligned} & \mathbb{T} \wedge p \equiv p \\ & \mathbb{F} \vee p \equiv p \end{aligned}$
	Idempotent laws	$\begin{aligned} & p \wedge p \equiv p \\ & p \vee p \equiv p \end{aligned}$
	Commutative laws	$\begin{aligned} & p \wedge q \equiv q \wedge p \\ & p \vee q \equiv q \vee p \end{aligned}$
	Associative laws	$\begin{aligned} & (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\ & (p \vee q) \vee r \equiv p \vee(q \vee r) \\ & \hline \end{aligned}$
	Distributive laws	$\begin{aligned} & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\ & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \end{aligned}$
	DeMorgan's laws	$\begin{aligned} & \neg(p \wedge q) \equiv(\neg p) \vee(\neg q) \\ & \neg(p \vee q) \equiv(\neg p) \wedge(\neg q) \end{aligned}$

- duality - for any tautology that uses only \wedge, \vee, \neg, another tautology can be obtained by interchanging \wedge with \vee, and \mathbb{T} with \mathbb{F}
- First Substitution Law - for any tautology containing p, another tautology can be obtained by replacing all occurrences of p with (Q)
- Second Substitution Law - if $P \equiv Q$, substituting Q for any occurrence of P in R results in a logically equivalent proposition
- chaining logical equivalences $-\mathrm{P} \equiv \mathrm{R}$ follows from $\mathrm{P} \equiv \mathrm{Q}$ and $\mathrm{Q} \equiv \mathrm{R}$促

9. For each of the following pairs of propositions, show that the two propositions
are logically equivalent by finding a chain of equivalences from one to the are logically equivalent by finding a chain of equivalences from one to the chain

$$
\begin{array}{ll}
\text { a) } p \wedge(q \wedge p), p \wedge q & \text { b) }(\neg p) \rightarrow q, p \vee q \\
\text { c) }(p \vee q) \wedge \neg q, p \wedge \neg q & \text { d) } p \rightarrow(q \rightarrow r),(p \wedge q) \\
\text { e) }(p \rightarrow r) \wedge(q \rightarrow r),(p \vee q) \rightarrow r & \text { f) } p \rightarrow(p \wedge q), p \rightarrow q
\end{array}
$$

10. For each of the following compound propositions, find a simpler proposition that is logically equivalent. Try to find a proposition that is as simple as possible

$$
\begin{array}{lll}
\text { a) }(p \wedge q) \vee \neg q & \text { b) } \neg(p \vee q) \wedge p & \text { c) } p \rightarrow \neg p \\
\text { d) } \neg p \wedge(p \vee q) & \text { e) }(q \wedge p) \rightarrow q & \text { f) }(p \rightarrow q) \wedge(\neg p \rightarrow q)
\end{array}
$$

11. Express the negation of each of the following sentences in natural English: a) It is sunny and cold.
b) I will have cake or I will have pie
c) If today is Tuesday, this is Belgium.
d) If you pass the final exam, you pass the course.
12. Apply one of the laws of logic to each of the following sentences, and rewrite it as an equivalent sentence. State which law you are applying.
a) I will have coffee and cake or pie.
b) He has neither talent nor ambition
c) You can have spam, or you can have spam.

CPSC 299: Faunataions ot Computation \cdot Spring 2024
\qquad
\qquad

