Key Points

- terminology - logic gates, logic circuits, combinatorial logic circuit, feedback loop, disjunctive normal form
- processes / algorithms
- building a logic circuit from a proposition
- constructing a proposition from a logic circuit
- using boolean algebra to simplify circuits
- theorems
every compound proposition is computed by a logic circuit with one output wire
every combinatorial logic circuit with one output computes the value of some compound proposition
it is possible to build a proposition with only \wedge, v, \neg and in disjunctive normal form for any truth table where at least one of the output values is true
- applications to computers

Constructing Circuits From Propositions

- algorithm

if the proposition contains operators other than \wedge, \vee, \neg, convert the proposition to a logically equivalent one using only $\Lambda, \mathrm{v}, \neg$
determine the main operator - the one that is applied last add the corresponding logic gate to the circuit
repeat the last two steps for each of the compound propositions joined by this main operator, connecting their outputs to the inputs of this main operator
create one input for each propositional variable and connect them to the appropriate inputs
a) $A \wedge(B \vee \neg C)$
b) $(p \wedge q) \wedge \neg(p \wedge \neg q)$
c) $(p \vee q \vee r) \wedge(\neg p \vee \neg q \vee \neg r)$
d) $\neg(A \wedge(B \vee C)) \vee(B \wedge \neg A)$

Logic Circuits

- logic gates are electronic components that compute values of simple propositions

- input and output wires can be in one of two states (on, off), which corresponds to the boolean values \mathbb{T}, \mathbb{F}
- logic circuits are built from connecting inputs and outputs of logic gates to each other

Constructing Circuits From Propositions

Constructing Propositions From Circuits

- algorithm
label the circuit's inputs with the name of a propositional variable label each gate's output with the proposition consisting of the propositions represented by the gate's inputs combined with operator represented by the gate
the output from the final logic gate is the proposition

Simplifying Circuits

- also be alert to the possibility of reusing outputs from gates

[^0]
Simplifying Circuits

- algorithm
convert the circuit to propositional logic
use boolean algebra to simplify the proposition
construct the circuit corresponding to the simplified proposition

CPSC 229: Fundations ot Computaion. Sping 2024

Theorems

- every compound proposition is computed by a logic circuit with one output wire
- rationale
apply the algorithm for converting propositions into circuits

Combinatorial Logic Circuits

- a combinatorial logic circuit has no feedback loops
- a feedback loop occurs when an output of a gate is connected back to an input of the same gate

circuits with feedback loops do not compute compound propositions, but they are important for computer memories

CPSC 299: Foundations of Compulation • Spoing 2024

Disjunctive Normal Form

- a compound proposition is in disjunctive normal form if
- it is a disjunction of conjunctions of simple terms, and - disjunction $=\mathrm{v}$, conjunction $=\wedge$, simple term $=p$ or $\neg p$
each propositional variable occurs at most once in each conjunction, and
- occurs as either p or $\neg p$, but not both
each conjunction occurs at most once in the disjunction - no repeats

$$
\begin{gathered}
(p \wedge q \wedge r) \vee(p \wedge \neg q \wedge r \wedge s) \vee(\neg p \wedge \neg q) \\
(p \wedge \neg q) \\
(A \wedge \neg B) \vee(\neg A \wedge B) \\
p \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q \wedge r) \vee(\neg p \wedge \neg q \wedge \neg r \wedge w)
\end{gathered}
$$

Theorems

- every combinatorial logic circuit with one output computes the value of some compound proposition
- rationale
each wire represents the value of some proposition
the proposition represented by an output wire consists of the
propositions represented by the input wires, joined by the logical operation corresponding to the gate

Theorems

- [theorem 1.3] it is possible to build a proposition with only \wedge, v, \neg and in disjunctive normal form for any truth table where at least one of the output values is \mathbb{T}
- rationale
for each row of the table
where the output value is \mathbb{T},
build a conjunction of simple
erms -
- for each variable p whose value is true in that row, include p in he conjunction
for each variable q whose value s false in that row, include $\neg q$ in the conjunction
take the disjunction of all such conjunctions

the conjunction is \mathbb{T} only for the specific combination of values in that row
the disjunction is true only if at least one of the disjunctions is \mathbb{T}

Theorems

- [theorem 1.3] it is possible to build a proposition with only \wedge, v, \neg and in disjunctive normal form for any truth table where at least one of the output values is true
- what if all of the output values are false?

p	q	r	output
\mathbb{F}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{F}	\mathbb{T}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{F}	\mathbb{T}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{F}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{T}	\mathbb{F}	\mathbb{F}
\mathbb{T}	\mathbb{T}	\mathbb{T}	\mathbb{F}

this is a contradiction - not really
useful to express
workaround: accept \mathbb{F} as a proposition in disjunctive normal form

CPSC 299 Foundaions ol

Half Adder

- for adding two 1-bit numbers
the corresponding truth table

the definition

\square propositions corresponding to the truth table $(\neg A \wedge B) \vee(A \wedge \neg B)$ $\equiv A \oplus B$
carry bit
circuit
(half adder)

Applications to Computers

Why use logic circuits in computers?

- on, off can be interpreted as 1,0
- numbers can be represented in binary

$$
\begin{array}{cccccccc}
2^{7} & 2^{6} & 2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
\times 128 & \times 64 & \times 32 & \times 16 & \times 8 & \times 4 & \times 2 & \times 1 \\
64 & + & & & 4+2 \\
\hline & & & & & \\
\hline
\end{array}
$$

- arithmetic can be performed on numbers
can create truth tables which correspond to arithmetic involving binary numbers
theorem 1.3 means a logic circuit can be constructed for those truth tables
- actually carrying out that process may only be practical for small circuits but the goal of the proof is that it is possible

Full Adder

- after the first (rightmost) column, each column involves adding three bits
the current bit from each number (A and B), plus the carry bit from the column to the right (Cin)

truth table for adding three bits

Adders

- string n full adders together to add n-bit numbers
- e.g. 2-bit adder $\mathrm{A} 1 \mathrm{~A} 0+\mathrm{B} 1 \mathrm{~B} 0=\mathrm{S} 1 \mathrm{~s} 0$

[^0]: CPSC 229: Fundations of Computaion . Sping 2024

