

Discovering Proofs - Advice

- use the definition
e.g. a proof about even numbers likely needs to utilize the definition of "even"
- use the hypotheses
-the hypotheses are the assumptions on which the conclusion will be based
- previously-proved results can be used

Proof

Discovering Proofs - Patterns

- $\forall x P(x)$
tactic: let x be an arbitrary entity in the domain of discourse;
show $P(x)$ is true
- showing $P(x)$ for any entity means that it must hold for all entities
- don't use any facts about x beyond what is assumed
- $\exists x P(x)$ - existence proof
- tactic: find an example - a specific entity a for which $P(a)$ is true
- disproving things
disprove $\forall x P(x)$ with an example showing $\exists x \neg P(x)$ - a counterexample
disprove $\exists x P(x)$ by showing $\forall x \neg P(x)$

Discovering Proofs - Patterns

- $p \rightarrow q$ aka $\forall x(P(x) \rightarrow Q(x))$ tactic: assume p, show q
${ }_{\text {true }} \rightarrow \mathrm{q}$ is true when p is false, so only need to handle the case where p is true
- tactic: show a chain of valid implications $p \rightarrow r \rightarrow s \rightarrow \ldots \rightarrow q$
- tactic: show the contrapositive $(\neg q \rightarrow \neg p)$ - indirect proof
- $p \wedge q$
tactic: show p and q separately
- $p \vee q$
tactic: assume $\neg p$ and show q (based on $p \vee q \equiv \neg p \rightarrow q$)
- $p \leftrightarrow q$
tactic: show $p \rightarrow q$ and $q \rightarrow p$
- in English: p if and only if q, p is necessary and sufficient for q
- tactic: show a chain of valid biconditionals $p \leftrightarrow r \leftrightarrow s \leftrightarrow \ldots \leftrightarrow q$

4. Determine whether each of the following statements is true. If it true, prove
it. If it is false, give a counterexample.
a) Every prime number is odd
b) Every prime number greater than 2 is odd.
c) If x and y are integers with $x<y$, then there is an integer z such that
d) If $x<y$. such that $x<z<y$
5. Suppose that r, s, and t are integers, such that r evenly divides s and s evenly divides t. Prove that r evenly divides t.
6. Prove that for all integers n, if n is odd then n^{2} is odd.
7. Prove that an integer n is divisible by 3 iff n^{2} is divisible by 3. (Hint: give an indirect proof of "if n^{2} is divisible by 3 then n is divisible by 3 ."
8. Prove or disprove each of the following statements.
a) The product of two even integers is even.
b) The product of two integers is even only if both integers are even
c) The product of two rational numbers is rational.
d) The product of two irrational numbers is irrational.
e) For all integers n, if n is divisible by 4 then n^{2} is divisible by 4 .
f) For all integers n, if n^{2} is divisible by 4 then n is divisible by 4 .
