

Terms and Concepts

- a set is a collection of elements
- an element can be anything, including another set
- set is completely defined by its elements
- the order in which the elements are listed is not important - no duplicates
- a set can be defined by listing its elements: $\{a, b, c, \ldots\}$
- $\{a, b, c$ \} does not necessarily require three different elements unless "a, b, c are distinct" is specified
- empty set $\}$ or \varnothing contains no elements
- a set can be defined by predicates:
$-\{x \mid P(x)\}$ requires that the domain of
discourse be a set, which is problematic
because there is no set of all sets

Key Points

- terms and concepts: set, element; empty set, power set; subset, disjoint sets
- notation
- defining sets
- set operations
- quantifiers and sets

Terms and Concepts

- two sets A, B are equal if they contain the same elements
- two sets A, B are disjoint if they have no elements in common
- a set A is a subset of a set B if everything in A is also in B A is a proper subset if there's at least one thing in B that isn't in A
the empty set is a subset of any set
- the power set of A is the set of all subsets of A

For example, if $A=\{a, b\}$, then the subsets of A are the empty set, $\{a\}$,
$\{b\}$, and $\{a, b\}$, so the power set of A is set given by

$$
\mathcal{P}(A)=\{0,\{a\},\{b\},\{a, b\}\} .
$$

- the power set of the empty set is $\{\varnothing\}$ - $\{\varnothing\} \neq\{ \}$

Set Operations

- union - elements in either set (or both)
- intersection - elements in both sets
- difference - elements in A that aren't in B

Suppose that $A=\{a, b, c\}$, that $B=\{b, d\}$, and that $C=\{d, e, f\}$. Then we can apply the definitions of union, intersection, and set difference to compute, for example, that:

$A \cup B=\{a, b, c, d\}$	$A \cap B=\{b\}$	$A \backslash B=\{a, c\}$
$A \cup C=\{a, b, c, d, e, f\}$	$A \cap C=\emptyset$	$A \backslash C=\{a, b, c\}$

CPSC 229: Fundations of Computaion. Soring 2024
2. Compute $A \cup B, A \cap B$, and $A \backslash B$ for each of the following pairs of sets a) $A=\{a, b, c\}, B=$
b) $A=\{1,2,3,4,5\}, B=\{2,4,6,8,10\}$
c) $A=\{a, b\}, B=\{a, b, c, d\}$
d) $A=\{a, b,\{a, b\}\}, B=\{\{a\},\{a, b\}\}$
3. Recall that \mathbb{N} represents the set of natural numbers. That is, $\mathbb{N}=\{0,1,2,3, \quad\}$ Let $X=\{n \in \mathbb{N} \mid n \geq 5\}$, let $Y=\{n \in \mathbb{N} \mid n \leq 10\}$, and let $Z=\{n \in$ $\mathbb{N} \mid n$ is an even number\}. Find each of the following sets:
a) $X \cap Y$
b) $X \cup Y$
c) $X \backslash Y$
d) $\mathbb{N} \backslash Z$
f) $Y \cap Z$
h) $Z \backslash \mathbb{N}$
e) $X \cap Z$
g) $Y \cup Z$

4. Find $\mathcal{P}(\{1,2,3\})$. (It has eight elements.)

6. Since $\mathcal{P}(A)$ is a set, it is possible to form the set $\mathcal{P}(\mathcal{P}(A))$. What is $\mathcal{P}(\mathcal{P}(\emptyset))$? What is $\mathcal{P}(\mathcal{P}(\{a, b\}))$? (It has sixteen elements.)
[^0]
Notation

CPSC 229: Foundations ot Computaion . Spoing 2024
5. Assume that a and b are entities and that $a \neq b$. Let A and B be the sets defined by $A=\{a,\{b\},\{a, b\}\}$ and $B=\{a, b,\{a,\{b\}\}\}$. Determine whether each of the following statements is true or false. Explain your answers.
a) $b \in A$
b) $\{a, b\} \subset A$
$\in A$
c) $\{a, b\} \subseteq B$
d) $\{a, b\} \in B$
e) $\{a,\{b\}\} \in A$
f) $\{a,\{b\}\} \in B$
8. If A is any set, what can you say about $A \cup A$? About $A \cap A$? About $A \backslash A$? Why?
9. Suppose that A and B are sets such that $A \subseteq B$. What can you say about $A \cup B$? About $A \cap B$? About $A \backslash B$? Why?
10. Suppose that A, B, and C are sets. Show that $C \subseteq A \cap B$ if and only if $(C \subseteq A) \wedge(C \subseteq B)$.
11. Suppose that A, B, and C are sets, and that $A \subseteq B$ and $B \subseteq C$. Show that $A \subseteq C$.
12. Suppose that A and B are sets such that $A \subseteq B$. Is it necessarily true that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$? Why or why not?

[^0]:

