Sets and Functions

Terms and Concepts

- a set is a collection of *elements*
 - an element can be anything, including another set
 - set is completely defined by its elements
 - the order in which the elements are listed is not important
 - no duplicates
- a set can be defined by listing its elements: $\{a, b, c, ...\}$
 - { a, b, c } does not necessarily require three different elements unless "a, b, c are distinct" is specified

 $\{x \in X | P(x)\}$

 $\{x | x \in X \land P(x)\}$

- empty set { } or Ø contains no elements
- a set can be defined by predicates:
 - {x | P(x)} requires that the domain of discourse be a set, which is problematic because there is no set of all sets

```
CPSC 229: Foundations of Computation • Spring 2024
```

Key Points

- terms and concepts: set, element; empty set, power set; subset, disjoint sets
- notation
- defining sets
- set operations
- quantifiers and sets

CPSC 229: Foundations of Computation • Spring 2024

Terms and Concepts

- two sets A, B are *equal* if they contain the same elements
- two sets A, B are *disjoint* if they have no elements in common
- a set A is a subset of a set B if everything in A is also in B
 A is a proper subset if there's at least one thing in B that isn't in A
 - the empty set is a subset of any set
- the power set of A is the set of all subsets of A

```
For example, if A = \{a, b\}, then the subsets of A are the empty set, \{a\}, \{b\}, and \{a, b\}, so the power set of A is set given by
```

 $\mathcal{P}(A) = \{ \, \emptyset, \, \{a\}, \, \{b\}, \, \{a, b\} \, \}.$

- the power set of the empty set is { Ø }
• { Ø } ≠ { }

CPSC 229: Foundations of Computation • Spring 2024

a) $A = \{a, b, b\}$ b) $A = \{1, 2,, b\}$, $A \cap B$, and $A \smallsetminus B$ c }, $B = \emptyset$ $3, 4, 5$ }, $B = \{2, 4, 6\}$	for each of the fo $(6, 8, 10)$	llowing pairs of sets
c) $A = \{a, b\}$ d) $A = \{a, b\}$	$\{a, b\}, B = \{a, b, c, d\}$ $\{a, b\}, B = \{\{a\}, d\}$	$\{a,b\}\}$	
3. Recall that \mathbb{N} rep Let $X = \{n \in$	presents the set of nat $\mathbb{N} \mid n \geq 5$, let $Y =$	tural numbers. The second sec	at is, $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ 0}, and let $Z = \{n \in$
$\mathbb{N} \mid n$ is an even	number}. Find each	of the following s	ets:
\sim $V \cap V$	b) $V \sqcup V$		
a) $X \cap Y$ e) $X \cap Z$	b) $X \cup Y$ f) $Y \cap Z$	c) $X \smallsetminus Y$ g) $Y \cup Z$	$\begin{array}{c} \mathbf{d}) \mathbb{N} \smallsetminus \mathbb{Z} \\ \mathbf{h}) \mathbb{Z} \smallsetminus \mathbb{N} \end{array}$
 a) X ∩ Y e) X ∩ Z 4. Find 𝒫({1,2,3 	b) $X \cup Y$ f) $Y \cap Z$	c) $X \smallsetminus Y$ g) $Y \cup Z$ ements.)	$\begin{array}{c} \mathbf{d}) \mathbb{N} \smallsetminus \mathbb{Z} \\ \mathbf{h}) \mathbb{Z} \smallsetminus \mathbb{N} \end{array}$

Notation

Notation	Definition	
$a \in A$	a is a member (or element) of A	
$a\not\in A$	$\neg(a \in A), a \text{ is not a member of } A$	
Ø	the empty set, which contains no elements	also { }
$A\subseteq B$	A is a subset of $B, \forall x (x \in A \rightarrow x \in B)$	
$A \varsubsetneq B$	A is a proper subset of $B, A \subseteq B \land A \neq B$	$(\forall x \in A)(D(x))$
$A\supseteq B$	A is a superset of B, same as $B \subseteq A$	$(\nabla X \in A)(P(X))$
$A \supsetneq B$	A is a proper superset of B, same as $B \supseteq A$	is true iff P(a) for every element a of
A = B	A and B have the same members, $A\subseteq B\wedge B\subseteq A$	the set A
$A\cup B$	union of A and B, $\{x \mid x \in A \lor x \in B\}$	
$A\cap B$	intersection of A and B, $\{x \mid x \in A \land x \in B\}$	$(\exists x \in A)(P(x))$
$A\smallsetminus B$	set difference of A and B, $\{x \mid x \in A \land x \notin B\}$	is true iff there is
$\mathcal{P}(A)$	power set of $A, \{X \mid X \subseteq A\}$	some element a of
igure 2.1: 5 and B are	Some of the notations that are defined in this section. sets, and a is an entity.	P(a) is true

5. Assume that a and b fined by $A = \{a, \{b\}$ each of the following	are entities and that $a \neq a$, $\{a, b\}$ and $B = \{a, b\}$ statements is true or fall	b. Let A and B be the sets de- , $\{a, \{b\}\}\}$. Determine whether se. Explain your answers.
a) $b \in A$ d) $\{a, b\} \in B$	b) $\{a, b\} \subseteq A$ e) $\{a, \{b\}\} \in A$	c) $\{a, b\} \subseteq B$ f) $\{a, \{b\}\} \in B$
8. If A is any set, what Why?	can you say about $A \cup A$? About $A \cap A$? About $A \smallsetminus A$?
9. Suppose that A and $A \cup B$? About $A \cap A$	B are sets such that A B? About $A \smallsetminus B$? Why	$\subseteq B$. What can you say about ?
10. Suppose that $A, B, (C \subseteq A) \land (C \subseteq B).$	and ${\cal C}$ are sets. Show	that $C \subseteq A \cap B$ if and only if
11. Suppose that $A, B, A \subseteq C$.	and C are sets, and that	t $A \subseteq B$ and $B \subseteq C$. Show that
12. Suppose that A and $\mathcal{P}(A) \subset \mathcal{P}(B)$? Why	B are sets such that A or why not?	$\subseteq B$. Is it necessarily true that