One-to-One Correspondence

- a one-to-one correspondence between sets A and B means every element of A is paired with an element of B and every element of B is paired with an element of A
demonstrates that two sets have the same number of elements counting establishes a one-to-one correspondence between a set with n elements and the set of numbers $\{1,2, \ldots, n\}$

Theorem 2.6. For each $n \in \mathbb{N}$, let N_{n} be the set $N_{n}=\{0,1, \ldots, n-1\}$.
If $n \neq m$, then there is no bijective function from N_{m} to N_{n}
there can't be a one-to-one correspondence between sets of a different size

CPSC 299:Foundaien

Cardinality

- for a finite set A, the cardinality of A, written $|A|$, is the number of elements in A

Theorem 2.7. A finite set with cardinality n has 2^{n} subsets.

Theorem 2.8. Let A and B be finite sets. Then

- $|A \times B|=|A| \cdot|B|$.
- $|A \cup B|=|A|+|B|-|A \cap B|$.
- If A and B are disjoint then $|A \cup B|=|A|+|B|$.
- $\left|A^{B}\right|=|A|^{|B|}$.
A^{B} is the set of
functions $A \rightarrow B$
- $|\mathcal{P}(A)|=2^{|A|}$.

Finite and Infinite

- a set A is finite is there is a one-to-one correspondence between A and N_{n} for some natural number n
- a set A is infinite if there is no such n

9202

1. Suppose that A, B, and C are finite sets which are pairwise disjoint. (That is, $A \cap B=A \cap C=B \cap C=\emptyset$.) Express the cardinality of each of the following sets in terms of $|A|,|B|$, and $|C|$. Which of your answers depend on the fact that the sets are pairwise disjoint?
$\begin{array}{lll}\text { a) } \mathcal{P}(A \cup B) & \text { b) } A \times\left(B^{C}\right) & \text { c) } \mathcal{P}(A) \times \mathcal{P}(C)\end{array}$
d) $A^{B \times C}$
e) $(A \times B)^{C}$
g) $(A \cup B)^{C}$
h) $(A \cup B) \times A$
i) $A \times A \times B \times B$
2. Suppose that A and B are finite sets which are not necessarily disjoint. What are all the possible values for $|A \cup B|$?
[^0]CPSC 229: Foundations of Computation - Spring 2024

Infinities

- a set A is countably infinite if there is a one-to-one correspondence between \mathbb{N} and A
- a set A is countable if it is either finite or countably infinite - it is possible in principle to make a list of the elements of A
- a set A is uncountable otherwise
- it is impossible to make a list of the elements of A

10. Show that the set $\mathbb{N} \times \mathbb{N}$ is countable.

- use a diagonalization argument

$$
\begin{array}{ccc}
(0,0) & (0,1) & (0,2) \\
(1,0) & (1,1) & (1,2) \\
(2,0) & (2,1) & (2,2) \\
\vdots & \vdots & \vdots \\
& \cdots \\
\hline
\end{array}
$$

$(0,0),(0,1),(1,0),(0,2),(1,1),(2,0),(0,3),(1,2),(2,1),(3,0),$.

[^1]
Infinities

- \mathbb{Z} (integer) is countably infinite
$\begin{array}{llllllll}0 & 1 & -1 & 2 & -2 & 3 & -3 & \ldots\end{array}$
$\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots\end{array}$
- \mathbb{Q} (rationals) is countably infinite
$\left(\frac{0}{1}, \frac{1}{1}, \frac{1}{2}, \frac{2}{1}\left(\frac{1}{3}, \frac{3}{1}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}, \frac{4}{1}, \frac{1}{5}, \frac{5}{1}\left(\frac{1}{6}, \frac{2}{5}, \ldots\right)\right.\right.$

CPSC 229:Foundations of Computaion . Sping 2024

Infinities

- \mathbb{R} (reals) is not countably infinite
0.90398937249879561297927654857945. 0.12349342094059875980239230834549 . 0.22400043298436234709323279989579 . 0.2240004329843623409323279989579.
0.5000000000000000000000000000000 0.50000000000000000000000000000000 . 0.77743449234234876990120909480009 . 0.77755555588888889498888980000111 0.31855100098187127121230 032057 0.34835440009848712712123940320577.
0.93473244447900498340999990948900 .
- $\mathbb{R} \backslash \mathbb{Q}$ (irrationals) is not countably infinite

Theorem 2.9. Suppose that X is an uncountable set, and that K is a countable subset of X. Then the set $X \backslash K$ is uncountable.
for any such list, a new number not in the listed can be constructed by picking a number not in oold for each column

Infinities

Theorem 2.11. Let X be any set. Then there is no one-to-one correspondence between X and $\mathcal{P}(X)$.

- for finite sets, $|\mathcal{P}(X)|=2^{|X|}>|X|$
the "larger" relationship holds for infinite sets too
can construct an infinite series of increasingly larger infinities with $\mathbb{R}, \mathcal{P}(\mathbb{R}), \mathcal{P}(\mathcal{P}(\mathbb{R})), \mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{R})))$,
CPSC 299: Foundaions of Computaion \cdot Sping 2024 $\quad{ }_{58}$

[^0]: 3. Let's say that an "identifier" consists of one or two characters. The fist character is one of the twenty-six letters (A, B, \ldots, C). The second character, f there is one, is either a letter or one of the ten digits $(0,1, \ldots, 9)$. How many different identifiers are there? Explain your answer in terms of unions and cross products.
 4. Suppose that there are five books that you might bring along to read on your vacation. In how many different ways can you decide which books to bring, assuming that you want to bring at least one? Why?
[^1]: CPSC 229: Fundations of Computaion. Soring 2024

